13,234 research outputs found

    Outsourcing, Inequality, and Cities

    Get PDF
    Outsourcing; Inequality; Segregation;

    Gravitational and Relativistic Deflection of X-Ray Superradiance

    Full text link
    Exploring Einstein's theories of relativity in quantum systems, for example by using atomic clocks at high speeds can deepen our knowledge in physics. However, many challenges still remain on finding novel methods for detecting effects of gravity and of special relativity and their roles in light-matter interaction. Here we introduce a scheme of x-ray quantum optics that allows for a millimeter scale investigation of the relativistic redshift by directly probing a fixed nuclear crystal in Earth's gravitational field with x-rays. Alternatively, a compact rotating crystal can be used to force interacting x-rays to experience inhomogeneous clock tick rates in a crystal. We find that an association of gravitational or special-relativistic time dilation with quantum interference will be manifested by deflections of x-ray photons. Our protocol suggests a new and feasible tabletop solution for probing effects of gravity and special relativity in the quantum world.Comment: 17 pages, 4 figures, 1 table and Supplemental Material

    Optomechanically induced transparency of x-rays via optical control

    Full text link
    The search for new control methods over light-matter interactions is one of the engines that advances fundamental physics and applied science alike. A specific class of light-matter interaction interfaces are setups coupling photons of distinct frequencies via matter. Such devices, nontrivial in design, could be endowed with multifunctional tasking. Here we envisage for the first time an optomechanical system that bridges optical and robust, high-frequency x-ray photons, which are otherwise notoriously difficult to control. The x-ray-optical system comprises of an optomechanical cavity and a movable microlever interacting with an optical laser and with x-rays via resonant nuclear scattering. We show that optomechanically induced transparency of a broad range of photons (10 eV-100 keV) is achievable in this setup, allowing to tune nuclear x-ray absorption spectra via optomechanical control. This paves ways for metrology applications, e.g., the detection of the 229^{229}Thorium clock transition, and an unprecedentedly precise control of x-rays using optical photons.Comment: 2 figures, supplementary material available with the file

    Generation of short hard X-ray pulses of tailored duration using a M\"ossbauer source

    Full text link
    We theoretically investigate a scheme for generations of single hard X-ray pulses of controllable duration in the range of 1 ns - 100 ns from a radioactive M\"ossbauer source. The scheme uses a magnetically perturbed 57^{57}FeBO3_3 crystal illuminated with recoilless 14.4 keV photons from a radioisotope 57^{57}Co nuclide. Such compact X-ray source is useful for the extension of quantum optics to 10 keV energy scale which has been spotlighted in recent years. So far, experimental achievements are mostly performed in synchrotron radiation facilities. However, tabletop and portable hard X-ray sources are still limited for time-resolved measurements and for implementing coherent controls over nuclear quantum optics systems. The availability of compact hard X-ray sources may become the engine to apply schemes of quantum information down to the subatomic scale. We demonstrate that the present method is versatile and provides an economic solution utilizing a M\"ossbauer source to perform time-resolved nuclear scattering, to produce suitable pulses for photon storage and to flexibly generate X-ray single-photon entanglement.Comment: 8 pages, 6 figure

    Field control of single x-ray photons in nuclear forward scattering

    Full text link
    Means to coherently control single x-ray photons in resonant scattering of light off nuclei by electric or magnetic fields are investigated theoretically. In order to derive the time response in nuclear forward scattering, we adapt the Maxwell-Bloch equations known from quantum optics to describe the resonant light pulse propagation through a nuclear medium. Two types of time-dependent perturbations of nuclear forward scattering are considered for coherent control of the resonantly scattered x-ray quanta. First, the simultaneous coherent propagation of two pulses through the nuclear sample is addressed. We find that the signal of a weak pulse can be enhanced or suppressed by a stronger pulse simultaneously propagating through the sample in counter-propagating geometry. Second, the effect of a time-dependent hyperfine splitting is investigated and we put forward a scheme that allows parts of the spectrum to be shifted forward in time. This is the inverse effect of coherent photon storage and may become a valuable technique if single x-ray photon wavepackets are to become the information carriers in future photonic circuits.Comment: 21 pages, 10 figures, v2 minor modifications in text to match the published version, results unchange
    • …
    corecore