1,685 research outputs found

    Spherical Regression: Learning Viewpoints, Surface Normals and 3D Rotations on n-Spheres

    Get PDF
    Many computer vision challenges require continuous outputs, but tend to be solved by discrete classification. The reason is classification's natural containment within a probability nn-simplex, as defined by the popular softmax activation function. Regular regression lacks such a closed geometry, leading to unstable training and convergence to suboptimal local minima. Starting from this insight we revisit regression in convolutional neural networks. We observe many continuous output problems in computer vision are naturally contained in closed geometrical manifolds, like the Euler angles in viewpoint estimation or the normals in surface normal estimation. A natural framework for posing such continuous output problems are nn-spheres, which are naturally closed geometric manifolds defined in the R(n+1)\mathbb{R}^{(n+1)} space. By introducing a spherical exponential mapping on nn-spheres at the regression output, we obtain well-behaved gradients, leading to stable training. We show how our spherical regression can be utilized for several computer vision challenges, specifically viewpoint estimation, surface normal estimation and 3D rotation estimation. For all these problems our experiments demonstrate the benefit of spherical regression. All paper resources are available at https://github.com/leoshine/Spherical_Regression.Comment: CVPR 2019 camera read

    A new experience mining approach for improving low carbon city development

    Full text link
    Developing low carbon city (LCC) has been widely appreciated as an important strategy for sustainable development. In line with this, an increasing number of cities globally have launched low carbon practices in recent years and gained various types of experience. However, it appears that existing studies do not present methods of how to use these valuable LCC experience in solving new problems. This study therefore introduces an experience mining approach to assist decision‐makers in reusing previous experience when tailoring LCC development strategies. The mining approach consists of three processes, namely, collecting historical cases which have been experiencing LCC, establishing LCC experience base, and mining similar experience cases. This study innovates the existing experience mining approach by introducing a two‐step mining process with considering the perspective of problem‐based urban characteristics (PBUCs) and the perspective of solution‐based urban characteristics (SBUCs). The application of the introduced mining approach has been demonstrated by a case study, where Shenyang’s energy structure is adopted as the target problem. The new experience mining approach provides a valuable reference for decision‐makers to retrieve similar cases for improving LCC development with the consideration of city characteristics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156189/2/sd2046_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156189/1/sd2046.pd

    Integrity and Junkiness Failure Handling for Embedding-based Retrieval: A Case Study in Social Network Search

    Full text link
    Embedding based retrieval has seen its usage in a variety of search applications like e-commerce, social networking search etc. While the approach has demonstrated its efficacy in tasks like semantic matching and contextual search, it is plagued by the problem of uncontrollable relevance. In this paper, we conduct an analysis of embedding-based retrieval launched in early 2021 on our social network search engine, and define two main categories of failures introduced by it, integrity and junkiness. The former refers to issues such as hate speech and offensive content that can severely harm user experience, while the latter includes irrelevant results like fuzzy text matching or language mismatches. Efficient methods during model inference are further proposed to resolve the issue, including indexing treatments and targeted user cohort treatments, etc. Though being simple, we show the methods have good offline NDCG and online A/B tests metrics gain in practice. We analyze the reasons for the improvements, pointing out that our methods are only preliminary attempts to this important but challenging problem. We put forward potential future directions to explore

    Precise aboveground biomass estimation of plantation forest trees using the novel allometric model and UAV-borne LiDAR

    Get PDF
    IntroductionPlantation forest is an important component of global forest resources. The accurate estimation of tree aboveground biomass (AGB) in plantation forest is of great significance for evaluating the carbon sequestration capacity. In recent years, UAV-borne LiDAR has been increasingly applied to forest survey, but the traditional allometric model for AGB estimation cannot be directly used without the diameter at breast height (DBH) of individual trees. Therefore, it is practicable to construct a novel allometric model incorporating the crown structure parameters, which can be precisely extracted from UAV LiDAR data. Additionally, the reduction effect of adjacent trees on crown area (Ac) should be taken into account.MethodsIn this study, we proposed an allometric model depending on the predictor variables of Ac and trunk height (H). The UAV-borne LiDAR was utilized to scan the sample plot of dawn redwood (DR) trees in the test site. The raw point cloud was first normalized and segmented into individual trees, whose Acs and Hs were sequentially extracted. To mitigate the effects of adjacent trees, the initial Acs were corrected to refer to the potential maximum Acs under undisturbed growth conditions. Finally, the corrected Acs (Acc) and Hs were input into the constructed allometric model to achieve the AGBs of DR trees.Results and discussionAccording to accuracy assessment, coefficient of determination (R2) and root mean square error (RMSE) of extracted Hs were 0.9688 and 0.51 m; R2 and RMSE of calculated AGBs were 0.9432 and 10.91 kg. The unrestricted growth parts of the tree crowns at the edge of a plantation forest could be used to derive the potential maximum Ac. Compared with the allometric models for AGB estimation relying only on trunk H or on initial Ac and H, the novel allometric model demonstrated superior performance in estimating the AGBs of trees in a plantation forest

    Motion-Guided Masking for Spatiotemporal Representation Learning

    Full text link
    Several recent works have directly extended the image masked autoencoder (MAE) with random masking into video domain, achieving promising results. However, unlike images, both spatial and temporal information are important for video understanding. This suggests that the random masking strategy that is inherited from the image MAE is less effective for video MAE. This motivates the design of a novel masking algorithm that can more efficiently make use of video saliency. Specifically, we propose a motion-guided masking algorithm (MGM) which leverages motion vectors to guide the position of each mask over time. Crucially, these motion-based correspondences can be directly obtained from information stored in the compressed format of the video, which makes our method efficient and scalable. On two challenging large-scale video benchmarks (Kinetics-400 and Something-Something V2), we equip video MAE with our MGM and achieve up to +1.3%1.3\% improvement compared to previous state-of-the-art methods. Additionally, our MGM achieves equivalent performance to previous video MAE using up to 66%66\% fewer training epochs. Lastly, we show that MGM generalizes better to downstream transfer learning and domain adaptation tasks on the UCF101, HMDB51, and Diving48 datasets, achieving up to +4.9%4.9\% improvement compared to baseline methods.Comment: Accepted to ICCV 202

    Global noise and oscillations in clustered excitable media

    Get PDF
    We study the effects of global noise on waves in heterogeneous, spatially clustered, reaction-diffusion systems with possible applications to calcium signaling. We first discuss how clustering of the excitability determines the dynamics by shifting bifurcation points and creating new oscillatory solutions. We then consider the specific situation, where intrinsic noise, due to the smallness of the excitable patches, destroys the global oscillatory state. We show that additional small global fluctuations, however, can partially restore temporal and spatial coherence of the oscillatory signal.U. S. National Science Foundation of China [IOS-0744798, 10775114
    corecore