14 research outputs found

    Resource levelling in repetitive construction projects with interruptions: an integrated approach

    Get PDF
    Despite the significance of resource levelling, project managers lack various ways to smooth resource usage fluctuation of a repetitive construction project besides changing resource usage. Tolerating interruptions is an effective way to provide flexibility for a schedule but is ignored when solving resource levelling problems. Therefore, this paper investigates the impacts of interruptions on resource usage fluctuation and develops an integrated approach that simultaneously integrates two scheduling adjusting processes: changing resource usage and tolerating interruptions. In this paper, two interruption conditions are proposed to identify which activities are suitable to be interrupted for smoothing resource usage fluctuation. The traditional resource levelling model is modified to a new scheduling model by incorporating interruptions. A two-stage GA-based scheduling algorithm is developed by integrating changing resource usage and tolerating interruptions. A commonly used pipeline project is adopted to illustrate the steps of the proposed approach and demonstrate its effectiveness and superiority through comparison with previous studies. A large-scale project further verifies the usability of the proposed approach. The results confirmed the feasibility to smooth resource usage fluctuation by interruptions, and the integrated approach can achieve a more competitive resource levelling result

    Broadening the phenotypic and molecular spectrum of FINCA syndrome: Biallelic NHLRC2 variants in 15 novel individuals

    Get PDF
    FINCA syndrome [MIM: 618278] is an autosomal recessive multisystem disorder characterized by fibrosis, neurodegeneration and cerebral angiomatosis. To date, 13 patients from nine families with biallelic NHLRC2 variants have been published. In all of them, the recurrent missense variant p.(Asp148Tyr) was detected on at least one allele. Common manifestations included lung or muscle fibrosis, respiratory distress, developmental delay, neuromuscular symptoms and seizures often followed by early death due to rapid disease progression.Here, we present 15 individuals from 12 families with an overlapping phenotype associated with nine novel NHLRC2 variants identified by exome analysis. All patients described here presented with moderate to severe global developmental delay and variable disease progression. Seizures, truncal hypotonia and movement disorders were frequently observed. Notably, we also present the first eight cases in which the recurrent p.(Asp148Tyr) variant was not detected in either homozygous or compound heterozygous state.We cloned and expressed all novel and most previously published non-truncating variants in HEK293-cells. From the results of these functional studies, we propose a potential genotype-phenotype correlation, with a greater reduction in protein expression being associated with a more severe phenotype.Taken together, our findings broaden the known phenotypic and molecular spectrum and emphasize that NHLRC2-related disease should be considered in patients presenting with intellectual disability, movement disorders, neuroregression and epilepsy with or without pulmonary involvement

    Evaluating the association of biallelic OGDHL variants with significant phenotypic heterogeneity

    Get PDF
    BACKGROUND: Biallelic variants in OGDHL, encoding part of the Ī±-ketoglutarate dehydrogenase complex, have been associated with highly heterogeneous neurological and neurodevelopmental disorders. However, the validity of this association remains to be confirmed. A second OGDHL patient cohort was recruited to carefully assess the gene-disease relationship. METHODS: Using an unbiased genotype-first approach, we screened large, multiethnic aggregated sequencing datasets worldwide for biallelic OGDHL variants. We used CRISPR/Cas9 to generate zebrafish knockouts of ogdhl, ogdh paralogs, and dhtkd1 to investigate functional relationships and impact during development. Functional complementation with patient variant transcripts was conducted to systematically assess protein functionality as a readout for pathogenicity. RESULTS: A cohort of 14 individuals from 12 unrelated families exhibited highly variable clinical phenotypes, with the majority of them presenting at least one additional variant, potentially accounting for a blended phenotype and complicating phenotypic understanding. We also uncovered extreme clinical heterogeneity and high allele frequencies, occasionally incompatible with a fully penetrant recessive disorder. Human cDNA of previously described and new variants were tested in an ogdhl zebrafish knockout model, adding functional evidence for variant reclassification. We disclosed evidence of hypomorphic alleles as well as a loss-of-function variant without deleterious effects in zebrafish variant testing also showing discordant familial segregation, challenging the relationship of OGDHL as a conventional Mendelian gene. Going further, we uncovered evidence for a complex compensatory relationship among OGDH, OGDHL, and DHTKD1 isoenzymes that are associated with neurodevelopmental disorders and exhibit complex transcriptional compensation patterns with partial functional redundancy. CONCLUSIONS: Based on the results of genetic, clinical, and functional studies, we formed three hypotheses in which to frame observations: biallelic OGDHL variants lead to a highly variable monogenic disorder, variants in OGDHL are following a complex pattern of inheritance, or they may not beĀ causative at all. Our study further highlights the continuing challenges of assessing the validity of reported disease-gene associations and effects of variants identified in these genes. This is particularly more complicated in making genetic diagnoses based on identification of variants in genes presenting a highly heterogenous phenotype such as "OGDHL-related disorders"

    Phosphatidylinositol 3-Kinase/Protein Kinase CĪ¶-Induced Phosphorylation of Sp1 and p107 Repressor Release Have a Critical Role in Histone Deacetylase Inhibitor-Mediated Depression of Transcription of the Luteinizing Hormone Receptor Gene

    No full text
    We have demonstrated that silencing of luteinizing hormone receptor (LHR) gene transcription is mediated via a proximal Sp1 site at its promoter. Trichostatin A (TSA) induced histone acetylation and gene activation in JAR cells that prevailed in the absence of changes in Sp1/Sp3 expression, their binding activity, disassociation of the histone deacetylase/mSin3A complex from the Sp1 site, or demethylation of the promoter. This indicated a different mechanism involved in TSA-induced derepression. The present studies have revealed that phosphatidylinositol 3-kinase/protein kinase CĪ¶ (PI3K/PKCĪ¶)-mediated Sp1 phosphorylation accounts for Sp1 site-dependent LHR gene activation. TSA caused marked phosphorylation of Sp1 at serine 641 in JAR and MCF-7 cells. Blockade of PI3K or PKCĪ¶ activity by specific inhibitors, kinase-deficient mutants, or small interfering RNA abolished the effect of TSA on the LHR gene and Sp1 phosphorylation. PKCĪ¶ was shown to associate with Sp1, and this association was enhanced by TSA. Sp1 phosphorylation at serine 641 was required for the release of the pRb homologue p107 from the LHR gene promoter, while p107 acted as a repressor of the LHR gene. Inhibition of PKCĪ¶ activity blocked the dissociation of p107 from the LHR gene promoter and markedly reduced Sp1 phosphorylation and transcription. These results have demonstrated that phosphorylation of Sp1 by PI3K/PKCĪ¶ is critical for TSA-activated LHR gene expression. These studies have revealed a novel mechanism of TSA action through derecruitment of a repressor from the LHR gene promoter in a PI3K/PKCĪ¶-induced Sp1 phosphorylation-dependent manner

    Transcriptional-Readthrough RNAs Reflect the Phenomenon of ā€œA Gene Contains Gene(s)ā€ or ā€œGene(s) within a Geneā€ in the Human Genome, and Thus Are Not Chimeric RNAs

    No full text
    Tens of thousands of chimeric RNAs, i.e., RNAs with sequences of two genes, have been identified in human cells. Most of them are formed by two neighboring genes on the same chromosome and are considered to be derived via transcriptional readthrough, but a true readthrough event still awaits more evidence and trans-splicing that joins two transcripts together remains as a possible mechanism. We regard those genomic loci that are transcriptionally read through as unannotated genes, because their transcriptional and posttranscriptional regulations are the same as those of already-annotated genes, including fusion genes formed due to genetic alterations. Therefore, readthrough RNAs and fusion-gene-derived RNAs are not chimeras. Only those two-gene RNAs formed at the RNA level, likely via trans-splicing, without corresponding genes as genomic parents, should be regarded as authentic chimeric RNAs. However, since in human cells, procedural and mechanistic details of trans-splicing have never been disclosed, we doubt the existence of trans-splicing. Therefore, there are probably no authentic chimeras in humans, after readthrough and fusion-gene derived RNAs are all put back into the group of ordinary RNAs. Therefore, it should be further determined whether in human cells all two-neighboring-gene RNAs are derived from transcriptional readthrough and whether trans-splicing truly exists

    Study of Absorption Characteristics of the Total Saponins from Radix Ilicis Pubescentis in an In Situ Single-Pass Intestinal Perfusion (SPIP) Rat Model by Using Ultra Performance Liquid Chromatography (UPLC)

    No full text
    In contrast to the extensively reported therapeutic activities, far less attention has been paid to the intestinal absorption of the total saponins from Radix Ilicis Pubescentis (in Chinese Mao-Dong-Qing, MDQ). This study aimed to investigate the intestinal absorption characteristics of ilexgenin A (C1), ilexsaponin A1 (C2), ilexsaponin B1 (C3), ilexsaponin B2 (C4), ilexsaponin B3 (DC1), and ilexoside O (DC2) when administrated with the total saponins from MDQ (MDQ-TS). An UPLC method for simultaneous determination of C1, C2, C3, C4, DC1, and DC2 in intestinal outflow perfusate was developed and validated. The absorption characteristics of MDQ-TS were investigated by evaluating the effects of intestinal segments, drug concentration, P-glycoprotein (P-gp) inhibitor (verapomil), endocytosis inhibitor (amantadine) and ethylene diamine tetraacetic acid (EDTA, tight junction modulator) on the intestinal transportation of MDQ-TS by using a single-pass intestinal perfusion (SPIP) rat model, and the influence of co-existing components on the intestinal transport of the six saponins was discussed. The results showed that effective apparent permeability (Papp) of C1, C2, C3, C4, and DC2 administrated in MDQ-TS form had no segment-dependent changes at low and middle dosage levels. C1, C2, C3, D4, DC1, and DC2 administrated in MDQ-TS form all exhibited excellent transmembrane permeability with Papp > 0.12 Ɨ 10āˆ’2 cmĀ·mināˆ’1. Meanwhile, Papp and effective absorption rate constant (Ka) values for the most saponins showed concentration dependence and saturation characteristics. After combining with P-gp inhibitor of verapamil, Papp of C2, C3, and DC1 in MDQ-TS group was significantly increased up to about 2.3-fold, 1.4-fold, and 3.4-fold, respectively in comparison to that of non-verapamil added group. Verapamil was found to improve the absorption of C2, C3, and DC1, indicating the involvement of an active transport mechanism in the absorption process. Compared with the non-amantadine added group, the absorption of C1, C2, C4, DC1, and DC2 were decreased by 40%, 71%, 31%, 53%, and 100%, respectively. Papp for the six target compounds increased up to about 1.2ā€“2.1-fold in comparison with the non-EDTA added, respectively. The gastrointestinal transport of MDQ-TS could be greatly promoted by EDTA, and inhibited by amantadine, implying that the intestinal absorption of MDQ-TS was by passive diffusion and endocytosis process. Compared with monomer administration group, the intestinal absorption of C3, C4, DC1, and DC2 was significantly improved by co-existing components in MDQ-TS, and the non-absorbable saponins of C4, DC1, and DC2 unexpectedly showed sufficient intestinal permeability with Papp > 0.12 Ɨ 10āˆ’2 cmĀ·mināˆ’1. This suggested that compounds orally administrated in TCM extract forms displayed unique intestinal absorption characteristics different from those of monomers, and the enhancing intestinal absorption of MDQ-TS reflected a holistic and specific view of traditional Chinese medicines (TCMs)
    corecore