30 research outputs found

    Measuring the black hole masses in accreting X-ray binaries by detecting the Doppler orbital motion of their accretion disk wind absorption lines

    Full text link
    So far essentially all black hole masses in X-ray binaries have been obtained by observing the companion star's velocity and light curves as functions of the orbital phase. However a major uncertainty is the estimate of the orbital inclination angle of an X-ray binary. Here we suggest to measure the black hole mass in an X-ray binary by measuring directly the black hole's orbital motion, thus obtaining the companion to black hole mass ratio. In this method we assume that accretion disk wind moves with the black hole and thus the black hole's orbital motion can be obtained from the Doppler velocity of the absorption lines produced in the accretion disk wind. We validate this method by analyzing the Chandra/HETG observations of GRO J1655-40, in which the black hole orbital motion with line of sight velocity of 90.8 (+-11.3) km/s, inferred from the Doppler velocity of disk-wind absorption lines, is consistent with the prediction from its previously measured system parameters. We obtain the black hole mass of 5.41 (+0.98, -0.57) solar masses and system inclination of 72.0 (+7.8, -7.5) degrees in GRO J1655-40. Additional observations of this source covering more orbital phases can improve estimates on its system parameters substantially. We then apply the method to the black hole X-ray binary LMC X-3 observed with HST/COS near orbital phase 0.75. We find that the disk-wind absorption lines of CIV doublet were shifted to about 50 km/s, which yields a companion-to-black-hole mass ratio of 0.6 for an assumed disk wind velocity of -400 km/s. Additional observations covering other orbital phases (0.25 in particular) are crucial to ease this assumption and then to directly constrain the mass ratio. This method in principle can also be applied to any accreting compact objects with detectable accretion disk wind absorption line features.Comment: 8 pages, 4 figures, 1 table. Accepted for publication in MNRA

    Insight-HXMT on-orbit thermal control status and thermal deformation impact analysis

    Full text link
    Purpose: The Hard X-ray Modulation Telescope is China's first X-ray astronomy satellite launched on June 15th, 2017, dubbed Insight-HXMT. Active and passive thermal control measures are employed to keep devices at suitable temperatures. In this paper, we analyzed the on-orbit thermal monitoring data of the first 5 years and investigated the effect of thermal deformation on the point spread function (PSF) of the telescopes. Methods: We examined the data of the on-orbit temperatures measured using 157 thermistors placed on the collimators, detectors and their support structures and compared the results with the thermal control requirements. The thermal deformation was evaluated by the relative orientation of the two star sensors installed on the main support structure. its effect was estimated with evolution of the PSF obtained with calibration scanning observations of the Crab nebula. Conclusion: The on-orbit temperatures met the thermal control requirements thus far, and the effect of thermal deformation on the PSF was negligible after the on-orbit pointing calibration.Comment: 25 pages, 35 figures, submitte

    Insight-HXMT observations of Swift J0243.6+6124 during its 2017-2018 outburst

    Full text link
    The recently discovered neutron star transient Swift J0243.6+6124 has been monitored by {\it the Hard X-ray Modulation Telescope} ({\it Insight-\rm HXMT). Based on the obtained data, we investigate the broadband spectrum of the source throughout the outburst. We estimate the broadband flux of the source and search for possible cyclotron line in the broadband spectrum. No evidence of line-like features is, however, found up to 150 keV\rm 150~keV. In the absence of any cyclotron line in its energy spectrum, we estimate the magnetic field of the source based on the observed spin evolution of the neutron star by applying two accretion torque models. In both cases, we get consistent results with B1013 GB\rm \sim 10^{13}~G, D6 kpcD\rm \sim 6~kpc and peak luminosity of >1039 erg s1\rm >10^{39}~erg~s^{-1} which makes the source the first Galactic ultraluminous X-ray source hosting a neutron star.Comment: publishe

    Overview to the Hard X-ray Modulation Telescope (Insight-HXMT) Satellite

    Full text link
    As China's first X-ray astronomical satellite, the Hard X-ray Modulation Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15, 2017, is a wide-band (1-250 keV) slat-collimator-based X-ray astronomy satellite with the capability of all-sky monitoring in 0.2-3 MeV. It was designed to perform pointing, scanning and gamma-ray burst (GRB) observations and, based on the Direct Demodulation Method (DDM), the image of the scanned sky region can be reconstructed. Here we give an overview of the mission and its progresses, including payload, core sciences, ground calibration/facility, ground segment, data archive, software, in-orbit performance, calibration, background model, observations and some preliminary results.Comment: 29 pages, 40 figures, 6 tables, to appear in Sci. China-Phys. Mech. Astron. arXiv admin note: text overlap with arXiv:1910.0443

    Effects of feeding strategies on growth,body composition, intestine digestive enzymes activities and intestine histology of Megalobrama pellegrini (Tchang, 1930) early juveniles raised in flow-through system

    Get PDF
    To determine the effects of feeding rate and feeding frequency on growth performance, digestive enzymes activities, and intestine development of Megalobrama pellegrini in a replicated flow-through system, we conducted a 42-day experiment. We designed three feeding rates (5%, 6.5%, and 8% body weight/day, BW/d) and two feeding frequencies (2 and 3 meals/day; m/d) in this experiment. Fish (0.57 ± 0.01 g) were distributed into 18 tanks with 70 individuals and fed with a commercial diet (33% crude protein, 4% total lipid). Results showed that the highest weight gain was found in the fish fed diet with 6.5% BW/day and 3 m/d, which was significantly higher in comparison with that of other feeding rate groups (5% BW/d and 6.5% BW/d) at both feeding frequency (2 and 3 m/d). Fish growth performance was significantly affected by the feeding rate but not by the feeding frequency. The significantly higher feed conversion ratio (FCR) was recorded at 8% BW/d with 3 m/d than other treatments. Furthermore, fish fed diet at 8% BW/d with 2 m/d had significantly high mortality during the middle of this trial. In contrast, we found that other fish groups' survival rates were higher (over 90%), and there were no significant differences among them. We saw a significantly lower whole-body crude protein, lipid, and intestinal digestive enzymes in fish fed at a ratio of 8% BW/d with 3 m/d compared with other treatments. Moreover, our findings revealed intestinal villi fusion and exfoliation in this group compared with other treatments. In conclusion, the Megalobrama pellegrini received a feeding rate of 6.5% BW/d, and a feeding frequency of 2 m/d may be the optimum feeding regime for raising Megalobrama pellegrini in a flow-through system

    Dilation framing camera with 4 ps resolution

    No full text
    A framing camera using pulse-dilation technology is reported in this article. The camera uses pulse dilation of an electron signal from a pulsed photo-cathode (PC) to achieve high temporal resolution. While the PC is not pulsed, the measured temporal resolution of the camera without pulse-dilation is about 71 ps. While the excitation pulse is applied on the PC, the measured temporal resolution is improved to 4 ps by using the pulse-dilation technology. The spatial resolution of the dilation framing camera is also measured, which is better than 100 μm. The relationship between the temporal resolution and the PC bias voltage is obtained. The variation of the temporal resolution with the gradient of the PC excitation pulse is also provided
    corecore