69 research outputs found
Deep Residual Learning via Large Sample Mean-Field Stochastic Optimization
We study a class of stochastic optimization problems of the mean-field type
arising in the optimal training of a deep residual neural network. We consider
the sampling problem arising from a continuous layer idealization, and
establish the existence of optimal relaxed controls when the training set has
finite size. The core of our paper is to prove the Gamma-convergence of the
sequence of sampled objective functionals, i.e., show that as the size of the
training set grows large, the minimizer of the sampled relaxed problem
converges to that of the limiting optimization problem. We connect the limit of
the large sampled objective functional to the unique solution, in the
trajectory sense, of a nonlinear Fokker-Planck-Kolmogorov (FPK) equation in a
random environment. We construct an example to show that, under mild
assumptions, the optimal network weights can be numerically computed by solving
a second-order differential equation with Neumann boundary conditions in the
sense of distributions
Topological Fractionation of Resting-State Networks
Exploring topological properties of human brain network has become an exciting topic in neuroscience research. Large-scale structural and functional brain networks both exhibit a small-world topology, which is evidence for global and local parallel information processing. Meanwhile, resting state networks (RSNs) underlying specific biological functions have provided insights into how intrinsic functional architecture influences cognitive and perceptual information processing. However, topological properties of single RSNs remain poorly understood. Here, we have two hypotheses: i) each RSN also has optimized small-world architecture; ii) topological properties of RSNs related to perceptual and higher cognitive processes are different. To test these hypotheses, we investigated the topological properties of the default-mode, dorsal attention, central-executive, somato-motor, visual and auditory networks derived from resting-state functional magnetic resonance imaging (fMRI). We found small-world topology in each RSN. Furthermore, small-world properties of cognitive networks were higher than those of perceptual networks. Our findings are the first to demonstrate a topological fractionation between perceptual and higher cognitive networks. Our approach may be useful for clinical research, especially for diseases that show selective abnormal connectivity in specific brain networks
Partially impaired functional connectivity states between right anterior insula and default mode network in autism spectrum disorder.
Time-invariant resting-state functional connectivity studies have illuminated the crucial role of the right anterior insula (rAI) in prominent social impairments of autism spectrum disorder (ASD). However, a recent dynamic connectivity study demonstrated that rather than being stationary, functional connectivity patterns of the rAI vary significantly across time. The present study aimed to explore the differences in functional connectivity in dynamic states of the rAI between individuals with ASD and typically developing controls (TD). Resting-state functional magnetic resonance imaging data obtained from a publicly available database were analyzed in 209 individuals with ASD and 298 demographically matched controls. A k-means clustering algorithm was utilized to obtain five dynamic states of functional connectivity of the rAI. The temporal properties, frequency properties, and meta-analytic decoding were first identified in TD group to obtain the characteristics of each rAI dynamic state. Multivariate analysis of variance was then performed to compare the functional connectivity patterns of the rAI between ASD and TD groups in obtained states. Significantly impaired connectivity was observed in ASD in the ventral medial prefrontal cortex and posterior cingulate cortex, which are two critical hubs of the default mode network (DMN). States in which ASD showed decreased connectivity between the rAI and these regions were those more relevant to socio-cognitive processing. From a dynamic perspective, these findings demonstrate partially impaired resting-state functional connectivity patterns between the rAI and DMN across states in ASD, and provide novel insights into the neural mechanisms underlying social impairments in individuals with ASD.Fundamental Research Funds for the Central Universities. Grant Numbers: 2672018ZYGX2018J079, ZYGX2016J187
National Institute for Health Research Cambridge Biomedical Resource Centre
National Natural Science Foundation of China. Grant Numbers: 61533006, 61673089, 81771919, 81871432
Sichuan Science and Technology Program. Grant Number: 2018TJPT0016
Specialized Research Fund for the Doctoral Program of Higher Education of China. Grant Number: 2012018511002
Recommended from our members
Cortical structural differences in major depressive disorder correlate with cell type-specific transcriptional signatures
Abstract: Major depressive disorder (MDD) has been shown to be associated with structural abnormalities in a variety of spatially diverse brain regions. However, the correlation between brain structural changes in MDD and gene expression is unclear. Here, we examine the link between brain-wide gene expression and morphometric changes in individuals with MDD, using neuroimaging data from two independent cohorts and a publicly available transcriptomic dataset. Morphometric similarity network (MSN) analysis shows replicable cortical structural differences in individuals with MDD compared to control subjects. Using human brain gene expression data, we observe that the expression of MDD-associated genes spatially correlates with MSN differences. Analysis of cell type-specific signature genes suggests that microglia and neuronal specific transcriptional changes account for most of the observed correlation with MDD-specific MSN differences. Collectively, our findings link molecular and structural changes relevant for MDD
Altered Effective Connectivity Network of the Amygdala in Social Anxiety Disorder: A Resting-State fMRI Study
The amygdala is often found to be abnormally recruited in social anxiety disorder (SAD) patients. The question whether amygdala activation is primarily abnormal and affects other brain systems or whether it responds “normally” to an abnormal pattern of information conveyed by other brain structures remained unanswered. To address this question, we investigated a network of effective connectivity associated with the amygdala using Granger causality analysis on resting-state functional MRI data of 22 SAD patients and 21 healthy controls (HC). Implications of abnormal effective connectivity and clinical severity were investigated using the Liebowitz Social Anxiety Scale (LSAS). Decreased influence from inferior temporal gyrus (ITG) to amygdala was found in SAD, while bidirectional influences between amygdala and visual cortices were increased compared to HCs. Clinical relevance of decreased effective connectivity from ITG to amygdala was suggested by a negative correlation of LSAS avoidance scores and the value of Granger causality. Our study is the first to reveal a network of abnormal effective connectivity of core structures in SAD. This is in support of a disregulation in predescribed modules involved in affect control. The amygdala is placed in a central position of dysfunction characterized both by decreased regulatory influence of orbitofrontal cortex and increased crosstalk with visual cortex. The model which is proposed based on our results lends neurobiological support towards cognitive models considering disinhibition and an attentional bias towards negative stimuli as a core feature of the disorder
Resting-State Brain Organization Revealed by Functional Covariance Networks
BACKGROUND: Brain network studies using techniques of intrinsic connectivity network based on fMRI time series (TS-ICN) and structural covariance network (SCN) have mapped out functional and structural organization of human brain at respective time scales. However, there lacks a meso-time-scale network to bridge the ICN and SCN and get insights of brain functional organization. METHODOLOGY AND PRINCIPAL FINDINGS: We proposed a functional covariance network (FCN) method by measuring the covariance of amplitude of low-frequency fluctuations (ALFF) in BOLD signals across subjects, and compared the patterns of ALFF-FCNs with the TS-ICNs and SCNs by mapping the brain networks of default network, task-positive network and sensory networks. We demonstrated large overlap among FCNs, ICNs and SCNs and modular nature in FCNs and ICNs by using conjunctional analysis. Most interestingly, FCN analysis showed a network dichotomy consisting of anti-correlated high-level cognitive system and low-level perceptive system, which is a novel finding different from the ICN dichotomy consisting of the default-mode network and the task-positive network. CONCLUSION: The current study proposed an ALFF-FCN approach to measure the interregional correlation of brain activity responding to short periods of state, and revealed novel organization patterns of resting-state brain activity from an intermediate time scale
Large-Scale Brain Networks in Board Game Experts: Insights from a Domain-Related Task and Task-Free Resting State
Cognitive performance relies on the coordination of large-scale networks of brain regions that are not only temporally correlated during different tasks, but also networks that show highly correlated spontaneous activity during a task-free state. Both task-related and task-free network activity has been associated with individual differences in cognitive performance. Therefore, we aimed to examine the influence of cognitive expertise on four networks associated with cognitive task performance: the default mode network (DMN) and three other cognitive networks (central-executive network, dorsal attention network, and salience network). During fMRI scanning, fifteen grandmaster and master level Chinese chess players (GM/M) and fifteen novice players carried out a Chinese chess task and a task-free resting state. Modulations of network activity during task were assessed, as well as resting-state functional connectivity of those networks. Relative to novices, GM/Ms showed a broader task-induced deactivation of DMN in the chess problem-solving task, and intrinsic functional connectivity of DMN was increased with a connectivity pattern associated with the caudate nucleus in GM/Ms. The three other cognitive networks did not exhibit any difference in task-evoked activation or intrinsic functional connectivity between the two groups. These findings demonstrate the effect of long-term learning and practice in cognitive expertise on large-scale brain networks, suggesting the important role of DMN deactivation in expert performance and enhanced functional integration of spontaneous activity within widely distributed DMN-caudate circuitry, which might better support high-level cognitive control of behavior
- …