120 research outputs found
The influence of adatom diffusion on the formation of skyrmion lattice in sub-monolayer Fe on Ir(111)
Room temperature grown Fe monolayer (ML) on the Ir(111) single crystal
substrate has attracted great research interests as nano-skyrmion lattice can
form under proper growth conditions. The formation of the nanoscale skyrmion,
however, appears to be greatly affected by the diffusion length of the Fe
adatoms on the Ir(111) surface. We made this observation by employing
spin-polarized scanning tunneling microscopy to study skyrmion formation upon
systematically changing the impurity density on the substrate surface prior to
Fe deposition. Since the substrate surface impurities serve as pinning centers
for Fe adatoms, the eventual size and shape of the Fe islands exhibit a direct
correlation with the impurity density, which in turn determines whether
skyrmion can be formed. Our observation indicates that skyrmion only forms when
the impurity density is below 0.006/nm2, i.e., 12 nm averaged spacing between
the neighboring defects. We verify the significance of Fe diffusion length by
growing Fe on clean Ir(111) substrate at low temperature of 30 K, where no
skyrmion was observed to form. Our findings signify the importance of diffusion
of Fe atoms on the Ir(111) substrate, which affects the size, shape and lattice
perfection of the Fe islands and thus the formation of skyrmion lattice
Creation of nano-skyrmion lattice in Fe/Ir(111) system using voltage pulse
Magnetic ultrathin films grown on heavy metal substrates often exhibit rich
spin structures due to the competition between various magnetic interactions
such as Heisenberg exchange, Dzyaloshinskii-Moriya interaction and higher-order
spin interactions. Here we employ spin-polarized scanning tunneling microscopy
to study magnetic nano-skyrmion phase in Fe monolayer grown on Ir(111)
substrate. Our observations show that the formation of nano-skyrmion lattice in
the Fe/Ir(111) system depends sensitively on the growth conditions and various
non-skyrmion spin states can be formed. Remarkably, the application of voltage
pulses between the tip and the sample can trigger a non-skyrmion to skyrmion
phase transition. The fact that nano-skyrmions can be created using voltage
pulse indicates that the balance between the competing magnetic interactions
can be affected by an external electric field, which is highly useful to design
skyrmion-based spintronic devices with low energy consumption
LEGO-Prover: Neural Theorem Proving with Growing Libraries
Despite the success of large language models (LLMs), the task of theorem
proving still remains one of the hardest reasoning tasks that is far from being
fully solved. Prior methods using language models have demonstrated promising
results, but they still struggle to prove even middle school level theorems.
One common limitation of these methods is that they assume a fixed theorem
library during the whole theorem proving process. However, as we all know,
creating new useful theorems or even new theories is not only helpful but
crucial and necessary for advancing mathematics and proving harder and deeper
results. In this work, we present LEGO-Prover, which employs a growing skill
library containing verified lemmas as skills to augment the capability of LLMs
used in theorem proving. By constructing the proof modularly, LEGO-Prover
enables LLMs to utilize existing skills retrieved from the library and to
create new skills during the proving process. These skills are further evolved
(by prompting an LLM) to enrich the library on another scale. Modular and
reusable skills are constantly added to the library to enable tackling
increasingly intricate mathematical problems. Moreover, the learned library
further bridges the gap between human proofs and formal proofs by making it
easier to impute missing steps. LEGO-Prover advances the state-of-the-art pass
rate on miniF2F-valid (48.0% to 57.0%) and miniF2F-test (45.5% to 47.1%).
During the proving process, LEGO-Prover also manages to generate over 20,000
skills (theorems/lemmas) and adds them to the growing library. Our ablation
study indicates that these newly added skills are indeed helpful for proving
theorems, resulting in an improvement from a success rate of 47.1% to 50.4%. We
also release our code and all the generated skills
Short-Wavelength Spin Waves in Yttrium Iron Garnet Micro-Channels on Silicon
Yttrium iron garnet (YIG) has been widely used in spin wave studies thanks to its low Gilbert damping constant. However, most high-quality YIG films are grown on gadolinium gallium garnet (GGG) substrate, which makes it difficult to integrate with existing semiconductor technology. We show spin wave excitation in a nanometer-thick YIG micro-channel on silicon substrate. The YIG is grown by pulsed laser deposition (PLD) in high-purity oxygen followed by rapid thermal annealing at 800 degrees C after deposition. Using meander coplanar waveguides at submicrometer scale, spin waves with wavelength down to 1 mu m are excited. By measuring the linewidth of the spin wave reflection spectra, a Gilbert damping constant alpha = 1.9 x 10(-3) was obtained
Unraveling the pathogenic potential of the Pentatrichomonas hominis PHGD strain: impact on IPEC-J2 cell growth, adhesion, and gene expression
Pentatrichomonas hominis, a flagellated parasitic protozoan, predominantly infects the mammalian digestive tract, often causing symptoms such as abdominal pain and diarrhea. However, studies investigating its pathogenicity are limited, and the mechanisms underlying P. hominis-induced diarrhea remain unclear. Establishing an in vitro cell model for P. hominis infection is imperative. This study investigated the interaction between P. hominis and IPEC-J2 cells and its impact on parasite growth, adhesion, morphology, and cell viability. Co-cultivation of P. hominis with IPEC-J2 cells resulted in exponential growth of the parasite, with peak densities reaching approximately 4.8 × 105 cells/mL and 1.2 × 106 cells/mL at 48 h for initial inoculation concentrations of 104 cells/mL and 105 cells/mL, respectively. The adhesion rate of P. hominis to IPEC-J2 cells reached a maximum of 93.82% and 86.57% at 24 h for initial inoculation concentrations of 104 cells/mL and 105 cells/mL, respectively. Morphological changes in IPEC-J2 cells co-cultivated with P. hominis were observed, manifesting as elongated and irregular shapes. The viability of IPEC-J2 cells exhibited a decreasing trend with increasing P. hominis concentration and co-cultivation time. Additionally, the mRNA expression levels of IL-6, IL-8, and TNF-α were upregulated, whereas those of CAT and CuZn-SOD were downregulated. These findings provide quantitative evidence that P. hominis can promote its growth by adhering to IPEC-J2 cells, inducing morphological changes, reducing cell viability, and triggering inflammatory responses. Further in vivo studies are warranted to confirm these results and enhance our understanding of P. hominis infection
TGF-β1 Down-Regulation of NKG2D/DAP10 and 2B4/SAP Expression on Human NK Cells Contributes to HBV Persistence
The mechanism underlying persistent hepatitis B virus (HBV) infection remains unclear. We investigated the role of innate immune responses to persistent HBV infection in 154 HBV-infected patients and 95 healthy controls. The expression of NKG2D- and 2B4-activating receptors on NK cells was significantly decreased, and moreover, the expression of DAP10 and SAP, the intracellular adaptor proteins of NKG2D and 2B4 (respectively), were lower, which then impaired NK cell-mediated cytotoxic capacity and interferon-γ production. Higher concentrations of transforming growth factor-beta 1 (TGF-β1) were found in sera from persistently infected HBV patients. TGF-β1 down-regulated the expression of NKG2D and 2B4 on NK cells in our in vitro study, leading to an impairment of their effector functions. Anti-TGF-β1 antibodies could restore the expression of NKG2D and 2B4 on NK cells in vitro. Furthermore, TGF-β1 induced cell-cycle arrest in NK cells by up-regulating the expression of p15 and p21 in NK cells from immunotolerant (IT) patients. We conclude that TGF-β1 may reduce the expression of NKG2D/DAP10 and 2B4/SAP, and those IT patients who are deficient in these double-activating signals have impaired NK cell function, which is correlated with persistent HBV infection
Interannual Relationship between ENSO and Atlantic Storm Track in Spring Modulated by the Atlantic Multidecadal Oscillation
It has been well documented that storm track activity are closely related to the weather and short-term climate variability in the extratropics, which is affected by sea surface temperature anomalies over the tropical eastern Pacific Ocean. Interannual relationship between the El Niño-Southern Oscillation (ENSO) and the Atlantic storm track (AST) in spring modulated by the Atlantic multidecadal oscillation (AMO) was investigated using reanalysis data and model simulations in this study. The meridional displacement of the AST is significantly correlated with ENSO during negative AMO phase, while no significant relationship is found during positive AMO phase. This may be due to the difference of 500-hPa geopotential height anomalies induced by ENSO in different AMO phases. For an El Niño event during the negative AMO phase, an anomalous 500-hPa wave train propagates eastward across the North American continent, with positive height anomalies at the high latitudes, extending from South Canada to Newfoundland. Thus, easterly wind anomalies appear over central North America, upstream of the negative AST anomaly. Accordingly, the local eddy growth rate (EGR) and baroclinic energy conversion (BC) are obviously reduced, which weaken (strengthen) the southern (northern) part of the climatological AST. As a result, the AST is shifted northward significantly. During the positive AMO phase, the ENSO-related anomalous wave train at 500 hPa only propagates northeastward and is largely suppressed over Northwest Canada, with positive height anomalies confined to the northwest of North America. Therefore, no significant changes of the westerly jet, EGR and BC are found in the upstream region of the AST, and the meridional location of the AST generally remains unchanged. Most previous studies investigate AST variabilities in winter, and few focus on AST in spring. This work may be helpful in understanding more about the interannual and interdecadal variations of springtime AST and in further studying the weather and short-term climate changes caused by AST
Ca<sup>2+</sup> flux down-regulation is induced by synergy between NKG2D and 2B4 in NK cells from IT patients.
<p>Freshly isolated, resting NK cells from the peripheral blood of HC (A), IA (B) and IT (C) patients were loaded with Fluo-4 and Fura Red, and preincubated with mAbs specific for NKG2D (blue), 2B4 (purple) or both (red) on ice for 30 min. Cells were washed, resuspended in cold HBSS with 1% FBS, and prewarmed at 37°C. Fluorescence was measured by Zeiss 510 confocal microscopy. Sixty seconds after the beginning of each scan, secondary F(ab')<sup>2</sup> goat anti–mouse IgG or KCL (green) was added to each chamber. Traces of the Fluo-4/Fura Red ratios of the representative NK cells are shown. Fluo-4/Fura Red ratios are plotted as a function of time. Green lines show activation with the isotype control (KCL). Blue and purple lines show activation by the single receptors. Red lines show activation by the combination of both receptors. The experiment shown is representative of five independent experiments. The Ca<sup>2+</sup> mobilisation induced by NKG2D and 2B4 synergy was measured in >100 NK cells from representative healthy controls or patients at 200 (D) and 500 s (E).</p
- …