4 research outputs found

    Human enteric a-defensin 5 promotes shigella infection by enhancing bacterial adhesion and invasion

    Get PDF
    Shigella is a Gram-negative bacterium that causes bacillary dysentery worldwide. It invades the intestinal epithelium to elicit intense inflammation and tissue damage, yet the underlying mechanisms of its host selectivity and low infectious inoculum remain perplexing. Here, we report that Shigella coopts human a-defensin 5 (HD5), a host defense peptide important for intestinal homeostasis and innate immunity, to enhance its adhesion to and invasion of mucosal tissues. HD5 promoted Shigella infection in vitro in a structure-dependent manner. Shigella, commonly devoid of an effective host-adhesion apparatus, preferentially targeted HD5 to augment its ability to colonize the intestinal epithelium through interactions with multiple bacterial membrane proteins. HD5 exacerbated infectivity and Shigella-induced pathology in a culture of human colorectal tissues and three animal models. Our findings illuminate how Shigella exploits innate immunity by turning HD5 into a virulence factor for infection, unveiling a mechanism of action for this highly proficient human pathogen

    Characterization of a biofilm-forming Shigella flexneri phenotype due to deficiency in Hep biosynthesis

    No full text
    Deficiency in biosynthesis of inner core of lipopolysaccharide (LPS) rendered a characteristic biofilm-forming phenotype in E. coli. The pathological implications of this new phenotype in Shigella flexneri, a highly contagious enteric Gram-negative bacteria that is closely related to E. coli, were investigated in this study. The ΔrfaC (also referred as waaC) mutant, with incomplete inner core of LPS due to deficiency in Hep biosynthesis, was characteristic of strong biofilm formation ability and exhibited much more pronounced adhesiveness and invasiveness to human epithelial cells than the parental strain and other LPS mutants, which also showed distinct pattern of F-actin recruitment. Failure to cause keratoconjunctivitis and colonize in the intestine in guinea pigs revealed that the fitness gain on host adhesion resulted from biofilm formation is not sufficient to offset the loss of fitness on survivability caused by LPS deletion. Our study suggests a clear positive relationship between increased surface hydrophobicity and adhesiveness of Shigella flexneri, which should be put into consideration of virulence of Shigella, especially when therapeutic strategy targeting the core oligosaccharide (OS) is considered an alternative to deal with bacterial antibiotics-resistance

    Bioinformatic analysis of microRNA and mRNA Regulation in peripheral blood mononuclear cells of patients with chronic obstructive pulmonary disease

    No full text
    Abstract Background Chronic obstructive pulmonary disease (COPD) is a progressive, irreversible chronic inflammatory disorder typified by increased recruitment of monocytes, lymphocytes and neutrophils. Because of this, as well as the convenience of peripheral blood nuclear cells (PBMCs) assessments, miRNA profiling of PBMCs has drawn increasing attention in recent years for various disease. Therefore, we analyzed miRNA and mRNA profiles to understand their regulatory network between COPD subjects versus smokers without airflow limitation. Methods miRNA and mRNA profiling of PBMCs from pooled 17 smokers and 14 COPD subjects was detected by high-throughput microarray. The expression of dysregulated miRNAs were validated by q-PCR. The miRNA targets in dysregulated mRNAs were predicted and the pathway enrichment was analyzed. Results miRNA microarray showed that 8 miRNAs were up-regulated and 3 miRNAs were down-regulated in COPD subjects compared with smokers; the upregulation of miR-24-3p, miR-93-5p, miR-320a and miR-320b and the downregulation of miR-1273\ua0g-3p were then validated. Bioinformatic analysis of regulatory network between miRNA and mRNA showed that NOD and TLR were the most enriched pathways. miR-24-3p was predicted to regulate IL-18, IL-1\u3b2, TNF, CCL3 and CCL4 and miR-93-5p to regulate I\u3baB\u3b1. Conclusions The expression of miRNA and mRNA were dysregulated in PBMCs of COPD patients compared with smokers without airflow limitation. The regulation network between the dysregulated miRNA and mRNA may provide potential therapeutic targets for COPD
    corecore