50 research outputs found

    In ovo serial skeletal muscle diffusion tractography of the developing chick embryo using DTI: feasibility and correlation with histology

    Get PDF
    Abstract Background Magnetic resonance imaging is a noninvasive method of evaluating embryonic development. Diffusion tensor imaging (DTI), based on the directional diffusivity of water molecules, is an established method of evaluating tissue structure. Yet embryonic motion degrades the in vivo acquisition of long-duration DTI. We used a dual-cooling technique to avoid motion artifact and aimed to investigate whether DTI can be used to monitor chick embryonic skeletal muscle development in ovo, and to investigate the correlation between quantitative DTI parameters fractional anisotropy (FA) and fiber length and quantitative histologic parameters fiber area percentage (FiberArea%) and limb length. Results From 84 normally developing chick embryos, 5 were randomly chosen each day from incubation days 5 to 18 and scanned using 3.0 Tesla magnetic resonance imaging. A dual-cooling technique is used before and during imaging. Eggs were cracked for making histological specimen after imaging. 3 eggs were serially imaged from days 5 to 18. We show that skeletal muscle fibers can be tracked in hind limb in DTI beginning with incubation day 8. Our data shows a good positive correlation between quantitative DTI and histologic parameters (FA vs FiberArea%: r= 0.943, p\u3c0.0001; Fiber_length vs Limb_length: r=0.974, p\u3c0.0001). The result of tracked fibers in DTI during incubation corresponds to the development of chick embryonic skeletal muscle as reported in the literature. Conclusion Diffusion tensor imaging can provide a noninvasive means of evaluating skeletal muscle development in ovo

    Traditional Chinese Medicine syndrome-related herbal prescriptions in treatment of malignant tumors

    Get PDF
    AbstractObjectiveTo investigate the distribution characteristics of TCM syndromes and the related herbal prescriptions for malignant tumors (MT).MethodsA clinical database of the TCM syndromes and the herbal prescriptions in treatment of 136 MT patients were established. The data were then analyzed using cluster and frequency analysis.ResultsAccording to the cluster analysis, the TCM syndromes in MT patients mainly included two patterns: deficiency of both Qi and Yin and internal accumulation of toxic heat. The commonly-prescribed herbs were Huangqi (Astraglus), NĂĽzhenzi (Fructus Ligustri Lucidi), Lingzhi (Ganoderma Lucidum), Huaishan (Dioscorea Opposita), Xiakucao (Prunella Vulgaris), and Baihuasheshecao (Herba Hedyotidis).ConclusionDeficiency of Qi and Yin is the primary syndrome of MT, and internal accumulation of toxic heat is the secondary syndrome. The herbs for Qi supplementation and Yin nourishment are mainly used, with the assistance of herbs for heat-clearance and detoxification

    Pseudomonas aeruginosa Quorum-Sensing and Type VI Secretion System Can Direct Interspecific Coexistence During Evolution

    Get PDF
    It is reported that a wide range of bacterial infections are polymicrobial, and the members in a local microcommunity can influence the growth of neighbors through physical and chemical interactions. Pseudomonas aeruginosa is an important opportunistic pathogen that normally causes a variety of acute and chronic infections, and clinical evidences suggest that P. aeruginosa can be frequently coisolated with other pathogens from the patients with chronic infections. However, the interspecific interaction and the coexisting mechanism of P. aeruginosa with coinfecting bacterial species during evolution still remain largely unclear. In this study, the relationships of P. aeruginosa with other Gram-positive (Staphylococcus aureus) and Gram-negative (Klebsiella pneumoniae) are investigated by using a series of on-plate proximity assay, in vitro coevolution assay, and RNA-sequencing. We find that although the development of a quorum-sensing system contributes P. aeruginosa a significant growth advantage to compete with S. aureus and K. pneumoniae, the quorum-sensing regulation of P. aeruginosa will be decreased during evolution and thus provides a basis for the formation of interspecific coexistence. The results of comparative transcriptomic analyses suggest that the persistent survival of S. aureus in the microcommunity has no significant effect on the intracellular transcriptional pattern of P. aeruginosa, while a more detailed competition happens between P. aeruginosa and K. pneumoniae. Specifically, the population of P. aeruginosa with decreased quorum-sensing regulation can still restrict the proportion increase of K. pneumoniae by enhancing the type VI secretion system-elicited cell aggressivity during further coevolution. These findings provide a general explanation for the formation of a dynamic stable microcommunity consisting of more than two bacterial species, and may contribute to the development of population biology and clinical therapy

    Genomic and Proteomic Analyses of the Fungus Arthrobotrys oligospora Provide Insights into Nematode-Trap Formation

    Get PDF
    Nematode-trapping fungi are “carnivorous” and attack their hosts using specialized trapping devices. The morphological development of these traps is the key indicator of their switch from saprophytic to predacious lifestyles. Here, the genome of the nematode-trapping fungus Arthrobotrys oligospora Fres. (ATCC24927) was reported. The genome contains 40.07 Mb assembled sequence with 11,479 predicted genes. Comparative analysis showed that A. oligospora shared many more genes with pathogenic fungi than with non-pathogenic fungi. Specifically, compared to several sequenced ascomycete fungi, the A. oligospora genome has a larger number of pathogenicity-related genes in the subtilisin, cellulase, cellobiohydrolase, and pectinesterase gene families. Searching against the pathogen-host interaction gene database identified 398 homologous genes involved in pathogenicity in other fungi. The analysis of repetitive sequences provided evidence for repeat-induced point mutations in A. oligospora. Proteomic and quantitative PCR (qPCR) analyses revealed that 90 genes were significantly up-regulated at the early stage of trap-formation by nematode extracts and most of these genes were involved in translation, amino acid metabolism, carbohydrate metabolism, cell wall and membrane biogenesis. Based on the combined genomic, proteomic and qPCR data, a model for the formation of nematode trapping device in this fungus was proposed. In this model, multiple fungal signal transduction pathways are activated by its nematode prey to further regulate downstream genes associated with diverse cellular processes such as energy metabolism, biosynthesis of the cell wall and adhesive proteins, cell division, glycerol accumulation and peroxisome biogenesis. This study will facilitate the identification of pathogenicity-related genes and provide a broad foundation for understanding the molecular and evolutionary mechanisms underlying fungi-nematodes interactions

    Forecasting Electricity Demand Using a New Grey Prediction Model with Smoothness Operator

    No full text
    A stable electricity supply is the basis for ensuring the healthy and sustained development of a regional economy. Reasonable electricity prediction is the key to guaranteeing the stability and efficiency of electricity supply. To this end, we used a reformative grey prediction model to forecast electricity demand. In order to effectively improve the smoothness of a raw modelling sequence, we employed an existing smoothing algorithm that significantly compressed the amplitude of the random oscillation sequence. Then, an improved grey forecasting model with three parameters (IGFM_TP) was deduced. In the end, a new model was used to forecast the demand for electricity of one city in the western region of China, and comparisons of simulation values and errors with those of GFM_TP, GM(1,1), DGM(1,1) and SAIGM were conducted. The findings show that the mean absolute simulation percentage error of IGFM_TP was 7.8%, and those of the other four models were 12.1%, 12.3%, 11.1%, and 10.1%, respectively. Therefore, the simulation precision of the new model achieved an optimal effect. The proposed new grey model provides is an effective method for electricity demand prediction

    Chemical Composition and Anti-Inflammatory, Cytotoxic and Antioxidant Activities of Essential Oil from Leaves of Mentha piperita Grown in China.

    No full text
    The chemical composition, anti-inflammatory, cytotoxic and antioxidant activities of essential oil from leaves of Mentha piperita (MEO) grown in China were investigated. Using GC-MS analysis, the chemical composition of MEO was characterized, showing that it was mainly composed of menthol, menthone and menthy acetate. MEO exhibited potent anti-inflammatory activities in a croton oil-induced mouse ear edema model. It could also effectively inhibit nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. The cytotoxic effect was assessed against four human cancer cells. MEO was found to be significantly active against human lung carcinoma SPC-A1, human leukemia K562 and human gastric cancer SGC-7901 cells, with an IC50 value of 10.89, 16.16 and 38.76 µg/ml, respectively. In addition, MEO had moderate antioxidant activity. The results of this study may provide an experimental basis for further systematic research, rational development and clinical utilization of peppermint resources

    Reevaluation of <i>Parasynechococcus</i>-like Strains and Genomic Analysis of Their Microsatellites and Compound Microsatellites

    No full text
    Morphologically similar to Synechococcus, a large number of Parasynechococcus strains were misclassified, resulting in extreme underestimation of their genetic diversity. In this study, 80 Synechococcus-like strains were reevaluated using a combination of 16S rRNA phylogeny and genomic approach, identifying 54 strains as Parasynechococcus-like strains and showing considerably intragenus genetic divergence among the subclades identified. Further, bioinformatics analysis disclosed diversified patterns of distribution, abundance, density, and diversity of microsatellites (SSRs) and compound microsatellites (CSSRs) in genomes of these Parasynechococcus-like strains. Variations of SSRs and CSSRs were observed amongst phylotypes and subclades. Both SSRs and CSSRs were in particular unequally distributed among genomes. Dinucleotide SSRs were the most widespread, while the genomes showed two patterns in the second most abundant repeat type (mononucleotide or trinucleotide SSRs). Both SSRs and CSSRs were predominantly observed in coding regions. These two types of microsatellites showed positive correlation with genome size (p p n, (AG)n and (AGC)n was a major one in the corresponding category. Meanwhile, distinctive motifs of CSSRs were found in 39 genomes. This study characterizes SSRs and CSSRs in genomes of Parasynechococcus-like strains and will be useful as a prerequisite for future studies regarding their distribution, function, and evolution. Moreover, the identified SSRs may facilitate fast acclimation of Parasynechococcus-like strains to fluctuating environments and contribute to the extensive distribution of Parasynechococcus species in global marine environments

    Subgraph Convolutional Network for Recommendation

    No full text

    The effect of MEO on NO and PGE2 production of LPS-stimulated RAW 264.7 macrophage cells.

    No full text
    <p>(A) represents the inhibitory effect of NO production, (B) represents the inhibitory effect of MEO on PGE2 production; and (C) indicates the cytotoxic effect of MEO on RAW 264.7 cells. Results are mean ± SD (n = 3).</p
    corecore