1 research outputs found

    Synthesis of Cu-Nanoparticle Hydrogel with Self-Healing and Photothermal Properties

    No full text
    Copper (Cu) nanoparticles possess unusual electrical, thermal, and optical properties. However, applications of these materials are often limited by their tendency to oxidize. We prepared Cu nanoparticles by a simple polyol method, with a good control over the particle size. The reaction required no inert atmosphere or surfactant agents. The as-prepared Cu nanoparticles showed good resistance to oxidation in solution. These Cu nanoparticles were then incorporated into a biocompatible polysaccharide hydrogel, which further stabilized the nanoparticles. The hybrid hydrogel exhibited a rapid self-healing ability. Because of the excellent photothermal conversion properties of the embedded Cu nanoparticles, the hybrid hydrogel showed rapid temperature elevation under laser irradiation. The hybrid hydrogel showed limited cytotoxicity; however, under laser irradiation the hydrogel displayed antibacterial properties owing to the heating effects. This study demonstrates that our hybrid hydrogel may have applications in biomedical fields and photothermal therapy
    corecore