11 research outputs found

    Antidepressant Effects of Repetitive Transcranial Magnetic Stimulation Over Prefrontal Cortex of Parkinson's Disease Patients With Depression: A Meta-Analysis

    Get PDF
    Objective: The purpose of this meta-analysis was to investigate the antidepressant effects of repetitive transcranial magnetic stimulation (rTMS) over the prefrontal cortex (PFC) of patients with Parkinson's disease (PD) and to determine the optimal rTMS parameters, such as the intensity, frequency and the delivered pattern of rTMS stimulation.Methods: EMBASE, PubMed, Web of Science, MEDLINE, and Cochrane data bases were researched for papers published before March 12, 2018. Studies investigating the anti-depression effects of rTMS over PFC in patients with PD were considered. The main outcomes of pre- and post-rTMS treatment as well as score changes were all extracted. The mean effect size was estimated by calculating the standardized mean difference (SMD) with 95% confidence interval (CI) by using fixed or random effect models as appropriate.Results: Nine studies containing 137 PD patients with depression were included. The pooled results showed significant pre-post anti-depressive effects of rTMS over PFC in PD patients with depression (SMD = −0.80, P < 0.00001). The subgroup analyses of stimulation intensity, frequencies, and models also revealed significant effects (Intensities: 90% RMT: SMD = −1.16, P = 0.0006; >100% RMT: SMD = −0.82, P < 0.0001. Frequencies: < 1.0 Hz: SMD = −0.83, P = 0.03; 5.0 Hz: SMD = −1.10, P < 0.0001; ≥10.0 Hz: SMD = −0.55, P = 0.02. Models: Continuous: SMD = −0.79, P < 0.0001; Discontinuous: SMD = −0.84, P = 0.02). But the results of the studies with place-controlled designs were not significant (Overall: SMD = −0.27, P = 0.54. Intensities: 90% RMT: SMD = 0.27, P = 0.68; 100% RMT: SMD = −0.32, P = 0.33. Frequencies: 5.0 Hz: SMD = −0.87, P = 0.10; ≥10.0 Hz: SMD = 0.27, P = 0.66. Models: Continuous: SMD = −0.28, P = 0.68; Discontinuous: SMD = −0.32, P = 0.33). The greater effect sizes of rTMS with 90% RMT, 5.0 Hz in discontinuous days can be observed rather than the other parameters in both kinds of analyses across study design.Conclusions: rTMS may have a significant positive pre-post anti-depressive effect over PFC on patients with depression, especially by using 5.0 Hz frequency with 90% RMT intensity in discontinuous days, which may produce better effects than other parameters. The real effect, though, was not different from that of the placebo. Future studies with larger sample sizes and high-quality studies are needed to further corroborate our results and to identify the optimal rTMS protocols

    Effect of Rotation Speed on Microstructure and Mechanical Properties of Continuous Drive Friction Welded Dissimilar Joints of 6061-T6 Al and Copper

    No full text
    The continuous drive friction welding of 6061-T6 Al and copper was investigated herein. The results show that with an increase in rotation speed, the width of the welded zone was gradually increased with the generation of higher temperatures, and the grain size in the dynamic recrystallization zone on the Al side first decreased and then increased due to the combined effect of heat and force. The microhardness on the bonding surface was significantly greater than that of the base materials due to the presence of intermetallic compounds, and there was a softening zone on both sides of the bonding surface, which was progressively more significant with an increase in the rotation speed. The ultimate tensile strength (UTS) of the welded joints first increased and then decreased with an increase in rotation speed. When the rotation speed was 1000 rpm, the UTS was at its peak value of 212 MPa, which reached 73.1% of the strength of the 6061-T6 Al base material

    Microstructure and Properties of Aluminum–Graphene–SiC Matrix Composites after Friction Stir Processing

    No full text
    Enhancing the mechanical properties of conventional ceramic particles-reinforced aluminum (Al 1060) metal matrix composites (AMCs) with lower detrimental phases is difficult. In this research work, AMCs are reinforced with graphene nanosheet (GNS) and hybrid reinforcement (GNS combined with 20% SiC, synthesized by shift-speed ball milling (SSBM), and further fabricated by two-pass friction stir processing (FSP). The effect of GNS content and the addition of SiC on the microstructure and mechanical properties of AMCs are studied. The microstructure, elemental, and phase composition of the developed composite are examined using SEM, EDS, and XRD techniques, respectively. Mechanical properties such as hardness, wear, and tensile strength are analyzed. The experimental results show that the GNS and the SiC are fairly distributed in the Al matrix via SSBM, which is beneficial for the mechanical properties of the composites. The maximum tensile strength of the composites is approximately 171.3 MPa in AMCs reinforced by hybrid reinforcements. The tensile strength of the GNS/Al composites increases when the GNS content increases from 0 to 1%, but then reduces with the further increase in GNS content. The hardness increases by 2.3%, 24.9%, 28.9%, and 41.8% when the Al 1060 is reinforced with 0.5, 1, 2% GNS, and a hybrid of SiC and GNS, respectively. The SiC provides further enhancement of the hardness of AMCs reinforced by GNS. The coefficient of friction decreases by about 7%, 13%, and 17% with the reinforcement of 0.5, 1, and 2% GNS, respectively. Hybrid reinforcement has the lowest friction coefficient (0.41). The decreasing friction coefficient contributes to the self-lubrication of GNSs, the reduction in the contact area with the substrate, and the load-bearing ability of ceramic particles. According to this study, the strengthening mechanisms of the composites may be due to thermal mismatch, grain refinement, and Orowan looping. In summary, such hybrid reinforcements effectively improve the mechanical and tribological properties of the composites

    Microstructure and Mechanical Properties of Friction Stir-Welded Dissimilar Joints of ZK60 and Mg-4.6Al-1.2Sn-0.7Zn Alloys

    No full text
    In order to clarify the microstructural evolution and the mechanical property of dissimilar friction stir-welded joints of ZK60 and Mg-4.6Al-1.2Sn-0.7Zn magnesium alloys, two types of arrangement with ZK60 at advancing side (AS) or retreating side (RS) were adopted. The macrostructure and the microstructure of the dissimilar welded joints were discussed, and the microhardness and the transverse tensile properties of the joints were measured. There are three stirring sub-zones with different compositions and two clear interfaces within the joints. Due to the effect of both the original grain size of base materials and the growth of recrystallized grains, in the stir zone (SZ), the grain size of ZK60 increased slightly, while the grain size of Mg-4.6Al-1.2Sn-0.7Zn decreased significantly. The dissolution of precipitates was gradually significant from RS to AS within the SZ due to the gradual increase in strain and heat. The grain refinement led to an increase in hardness, while the dissolution of precipitates resulted in a decrease in hardness. The performance of the joints obtained with ZK60 placed on the RS is slightly better than that of that on the AS. The tensile fracture of both joints occurred at the interface between SZ and the thermos-mechanical affected zone at the AS, and showed a quasi-dissociative fracture

    Improved Compressive Properties of Lattice Structure Based on an Implicit Surface Hybrid Optimization Design Method via Selective Laser Melting

    No full text
    In recent years, the lattice structure produced by additive manufacturing is a type of metal foam that has been increasingly investigated for its unique mechanical properties. However, the conventional Computer-Aided Design (CAD) is inefficient, the triply periodic minimal surfaces are rarely mixed, and the smooth transitions at the boundaries are not considered. In this study, a hybrid optimization design method based on implicit surfaces is proposed, which combines multiple implicit surfaces to achieve the continuous change in the curvature at the structure junctions and reduce the stress concentration. The hybrid lattice structures designed by this method were additively manufactured using 316L alloy via a selective laser melting. The results of the finite element analysis and mechanical compression test show that the hybrid lattice structures generated by this method exhibit a higher yield strength and energy absorption. These works can be used for other implicit surfaces, improve and enrich the types of implicit surfaces, and provide more good choices for practical applications
    corecore