4 research outputs found

    Epileptic seizure detection with deep EEG features by convolutional neural network and shallow classifiers

    Get PDF
    IntroductionIn the clinical setting, it becomes increasingly important to detect epileptic seizures automatically since it could significantly reduce the burden for the care of patients suffering from intractable epilepsy. Electroencephalography (EEG) signals record the brain's electrical activity and contain rich information about brain dysfunction. As a non-invasive and inexpensive tool for detecting epileptic seizures, visual evaluation of EEG recordings is labor-intensive and subjective and requires significant improvement.MethodsThis study aims to develop a new approach to recognize seizures automatically using EEG recordings. During feature extraction of EEG input from raw data, we construct a new deep neural network (DNN) model. Deep feature maps derived from layers placed hierarchically in a convolution neural network are put into different kinds of shallow classifiers to detect the anomaly. Feature maps are reduced in dimensionality using Principal Component Analysis (PCA).ResultsBy analyzing the EEG Epilepsy dataset and the Bonn dataset for epilepsy, we conclude that our proposed method is both effective and robust. These datasets vary significantly in the acquisition of data, the formulation of clinical protocols, and the storage of digital information, making processing and analysis challenging. On both datasets, extensive experiments are performed using a cross-validation by 10 folds strategy to demonstrate approximately 100% accuracy for binary and multi-category classification.DiscussionIn addition to demonstrating that our methodology outperforms other up-to-date approaches, the results of this study also suggest that it can be applied in clinical practice as well

    Capability of IMERG V6 Early, Late, and Final Precipitation Products for Monitoring Extreme Precipitation Events

    No full text
    The monitoring of extreme precipitation events is an important task in environmental research, but the ability of the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) precipitation products to monitor extreme precipitation events remains poorly understood. In this study, three precipitation products for IMERG version 6, early-, late-, and final-run products (IMERG-E, IMERG-L, and IMERG-F, respectively), were used to capture extreme precipitation, and their applicability to monitor extreme precipitation events over Hubei province in China was evaluated. We found that the accuracy of the three IMERG precipitation products is inconsistent in areas of complex and less complex topography. Compared with gauge-based precipitation data, the results reveal the following: (1) All products can accurately capture the spatiotemporal variation patterns in precipitation during extreme precipitation events. (2) The ability of IMERG-F was good in areas of complex topography, followed by IMERG-E and IMERG-L. In areas of less complex topography, IMERG-E and IMERG-L produced outcomes that were consistent with those of IMERG-F. (3) The three IMERG precipitation products can capture the actual hourly precipitation tendencies of extreme precipitation events. (4) In areas of complex topography, the rainfall intensity estimation ability of IMERG-F is better than those of IMERG-E and IMERG-L

    Extended-Range Runoff Forecasting Using a One-Way Coupled Climate–Hydrological Model: Case Studies of the Yiluo and Beijiang Rivers in China

    No full text
    Extended-range runoff forecasting is important for water resources management and energy planning. Experimental extended-range runoff was hindcasted, based on an extended-range climate model, developed by National Climate Center of the China Meteorological Administration, and semi-distributed hydrological model HBV-D. The skill of the runoff forecasts was explored using mean square skill score (MSSS), anomaly correlation coefficient (ACC), and areas under the relative operating characteristics curve (AUC) for three terciles for three experimental 51-day periods during flood season (June 1 to July 21, July 1 to August 20 and August 1 to September 20) for two rivers in China. The results revealed decreasing trends of the five indices, and varying length of the continuous longest skilful time slice from 3 days to 6 weeks depending on index, period and river location. In most cases, skilful abnormal terciles forecast occurred more often or with similar frequency to deterministic forecasts. It suggests that ensemble probability forecasting is a method with potential for extended-range river runoff forecast. Further, abnormal terciles are more skillful than normal terciles, and above normal are more skillful than below normal. In terms of a temporal mean of the MSSS and ACC, deterministic forecasts are skillful for both rivers in all three periods, but more skillful for the Beijiang River than for the Yiluo River in most cases
    corecore