141 research outputs found

    Tensor Decomposition Based Attention Module for Spiking Neural Networks

    Full text link
    The attention mechanism has been proven to be an effective way to improve spiking neural network (SNN). However, based on the fact that the current SNN input data flow is split into tensors to process on GPUs, none of the previous works consider the properties of tensors to implement an attention module. This inspires us to rethink current SNN from the perspective of tensor-relevant theories. Using tensor decomposition, we design the \textit{projected full attention} (PFA) module, which demonstrates excellent results with linearly growing parameters. Specifically, PFA is composed by the \textit{linear projection of spike tensor} (LPST) module and \textit{attention map composing} (AMC) module. In LPST, we start by compressing the original spike tensor into three projected tensors using a single property-preserving strategy with learnable parameters for each dimension. Then, in AMC, we exploit the inverse procedure of the tensor decomposition process to combine the three tensors into the attention map using a so-called connecting factor. To validate the effectiveness of the proposed PFA module, we integrate it into the widely used VGG and ResNet architectures for classification tasks. Our method achieves state-of-the-art performance on both static and dynamic benchmark datasets, surpassing the existing SNN models with Transformer-based and CNN-based backbones.Comment: 11 page

    Identity-Aware Hand Mesh Estimation and Personalization from RGB Images

    Full text link
    Reconstructing 3D hand meshes from monocular RGB images has attracted increasing amount of attention due to its enormous potential applications in the field of AR/VR. Most state-of-the-art methods attempt to tackle this task in an anonymous manner. Specifically, the identity of the subject is ignored even though it is practically available in real applications where the user is unchanged in a continuous recording session. In this paper, we propose an identity-aware hand mesh estimation model, which can incorporate the identity information represented by the intrinsic shape parameters of the subject. We demonstrate the importance of the identity information by comparing the proposed identity-aware model to a baseline which treats subject anonymously. Furthermore, to handle the use case where the test subject is unseen, we propose a novel personalization pipeline to calibrate the intrinsic shape parameters using only a few unlabeled RGB images of the subject. Experiments on two large scale public datasets validate the state-of-the-art performance of our proposed method.Comment: ECCV 2022. Github https://github.com/deyingk/PersonalizedHandMeshEstimatio

    Controllability of Second-Order Semilinear Impulsive Stochastic Neutral Functional Evolution Equations

    Get PDF
    We consider a class of impulsive neutral second-order stochastic functional evolution equations. The Sadovskii fixed point theorem and the theory of strongly continuous cosine families of operators are used to investigate the sufficient conditions for the controllability of the system considered. An example is provided to illustrate our results

    Production of Gadolinium-loaded Liquid Scintillator for the Daya Bay Reactor Neutrino Experiment

    Get PDF
    We report on the production and characterization of liquid scintillators for the detection of electron antineutrinos by the Daya Bay Reactor Neutrino Experiment. One hundred eighty-five tons of gadolinium-loaded (0.1% by mass) liquid scintillator (Gd-LS) and two hundred tons of unloaded liquid scintillator (LS) were successfully produced from a linear-alkylbenzene (LAB) solvent in six months. The scintillator properties, the production and purification systems, and the quality assurance and control (QA/QC) procedures are described.Comment: 15 pages, 11 figures. Submitted to Nuclear Instruments and Methods in Physics Research Section

    Anisotropic, Intermediate Coupling Superconductivity in Cu0.03TaS2

    Full text link
    The anisotropic superconducting state properties in Cu0.03TaS2 have been investigated by magnetization, magnetoresistance, and specific heat measurements. It clearly shows that Cu0.03TaS2 undergoes a superconducting transition at TC = 4.03 K. The obtained superconducting parameters demonstrate that Cu0.03TaS2 is an anisotropic type-II superconductor. Combining specific heat jump = 1.6(4), gap ratio 2/kBTC = 4.0(9) and the estimated electron-phonon coupling constant ~ 0.68, the superconductivity in Cu0.03TaS2 is explained within the intermediate coupling BCS scenario. First-principles electronic structure calculations suggest that copper intercalation of 2H-TaS2 causes a considerable increase of the Fermi surface volume and the carrier density, which suppresses the CDW fluctuation and favors the raise of TC.Comment: 16pages, 5figure

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure
    • …
    corecore