139 research outputs found
Quantitative phase imaging through an ultra-thin lensless fiber endoscope
Quantitative phase imaging (QPI) is a label-free technique providing both morphology and quantitative biophysical information in biomedicine. However, applying such a powerful technique to in vivo pathological diagnosis remains challenging. Multi-core fiber bundles (MCFs) enable ultra-thin probes for in vivo imaging, but current MCF imaging techniques are limited to amplitude imaging modalities. We demonstrate a computational lensless microendoscope that uses an ultra-thin bare MCF to perform quantitative phase imaging with microscale lateral resolution and nanoscale axial sensitivity of the optical path length. The incident complex light field at the measurement side is precisely reconstructed from the far-field speckle pattern at the detection side, enabling digital refocusing in a multi-layer sample without any mechanical movement. The accuracy of the quantitative phase reconstruction is validated by imaging the phase target and hydrogel beads through the MCF. With the proposed imaging modality, three-dimensional imaging of human cancer cells is achieved through the ultra-thin fiber endoscope, promising widespread clinical applications
4K-DMDNet: diffraction model-driven network for 4K computer-generated holography
Deep learning offers a novel opportunity to achieve both high-quality and high-speed computer-generated holography (CGH). Current data-driven deep learning algorithms face the challenge that the labeled training datasets limit the training performance and generalization. The model-driven deep learning introduces the diffraction model into the neural network. It eliminates the need for the labeled training dataset and has been extensively applied to hologram generation. However, the existing model-driven deep learning algorithms face the problem of insufficient constraints. In this study, we propose a model-driven neural network capable of high-fidelity 4K computer-generated hologram generation, called 4K Diffraction Model-driven Network (4K-DMDNet). The constraint of the reconstructed images in the frequency domain is strengthened. And a network structure that combines the residual method and sub-pixel convolution method is built, which effectively enhances the fitting ability of the network for inverse problems. The generalization of the 4K-DMDNet is demonstrated with binary, grayscale and 3D images. High-quality full-color optical reconstructions of the 4K holograms have been achieved at the wavelengths of 450 nm, 520 nm, and 638 nm
Phase change behaviors of Zn-doped Ge2Sb2Te5 films
This work was financially supported by the Program for
New Century Excellent Talents in University (Grant No.
NCET-10-0976), the International Science & Technology
Cooperation Program of China (Grant No. 2011DFA12040),
the National Program on Key Basic Research Project (973
Program) (Grant No. 2012CB722703), the Natural Science
Foundation of China (Grant Nos. 61008041 and 60978058),
the Natural Science Foundation of Zhejiang Province, China
(Grant No. Y1090996), the Natural Science Foundation of
Ningbo City, China (Grant No. 2011A610092), the Program
for Innovative Research Team of Ningbo city (Grant No.
2009B21007), and sponsored by K. C. Wong Magna Fund in
Ningbo University
Enhanced thermal stability and electrical behavior of Zn-doped Sb2Te films for phase change memory application
Zn-doped Sb₂Te films are proposed to present the feasibility for phase-change memory application. Zn atoms are found to significantly increase crystallization temperature of Zn x (Sb₂Te)1−x films and be almost linearly with the wide range of Zn-doping concentration from x = 0 to 29.67 at.%. Crystalline resistances are enhanced by Zn-doping, while keeping the large amorphous/crystalline resistance ratio almost constant at ∼10⁵. Especially, the Zn 26.07 (Sb₂Te)73.93 and Zn 29.67 (Sb₂Te)70.33 films exhibit a larger resistance change, faster crystallization speed, and better thermal stability due to the formation of amorphous Zn-Sb and Zn-Te phases as well as uniform distribution of Sb₂Te crystalline grains
Improved phase-change characteristics of Zn-doped amorphous Sb₇Te₃ films for high-speed and low-power phase change memory
The superior performance of Zn-doped Sb₇Te₃ films might be favorable for the application in phase change memory. It was found that Zn dopants were able to suppress phase separation and form single stable Sb2Te crystal grain, diminish the grain size, and enhance the amorphous thermal stability of Sb₇Te₃ film. Especially, Zn 30.19(Sb₇Te₃)69.81 film has higher crystallization temperature (∼258 °C), larger crystallization activation energy (∼4.15 eV), better data retention (∼170.6 °C for 10 yr), wider band gap (∼0.73 eV), and higher crystalline resistance. The minimum times for crystallization of Zn 30.19(Sb₇Te₃)69.81 were revealed to be as short as ∼10 ns at a given proper laser power of 70 mW.This work was financially supported by the International
Science & Technology Cooperation Program of China
(Grant No. 2011DFA12040), the National Program on Key
Basic Research Project (973 Program) (Grant No.
2012CB722703), the Natural Science Foundation of China
(Grant Nos. 61008041 and 60978058), the CAS Special
Grant for Postgraduate Research, Innovation and Practice,
the Program for Innovative Research Team of Ningbo city
(Grant No. 2009B21007), and sponsored by K. C. Wong
Magna Fund in Ningbo University
Two types of zero Hall phenomena in few-layer MnBiTe
The van der Waals antiferromagnetic topological insulator MnBiTe
represents a promising platform for exploring the layer-dependent magnetism and
topological states of matter. Despite the realization of several quantized
phenomena, such as the quantum anomalous Hall effect and the axion insulator
state, the recently observed discrepancies between magnetic and transport
properties have aroused controversies concerning the topological nature of
MnBiTe in the ground state. Here, we demonstrate the existence of two
distinct types of zero Hall phenomena in few-layer MnBiTe. In addition
to the robust zero Hall plateau associated with the axion insulator state, an
unexpected zero Hall phenomenon also occurs in some odd-number-septuple layer
devices. Importantly, a statistical survey of the optical contrast in more than
200 MnBiTe reveals that such accidental zero Hall phenomenon arises
from the reduction of effective thickness during fabrication process, a factor
that was rarely noticed in previous studies of 2D materials. Our finding not
only resolves the controversies on the relation between magnetism and anomalous
Hall effect in MnBiTe, but also highlights the critical issues
concerning the fabrication and characterization of devices based on 2D
materials.Comment: 21 pages, 4 figure
Epidemiological and genomic analyses of human isolates of Streptococcus suis between 2005 and 2021 in Shenzhen, China
Streptococcus suis (S. suis) is an important food-borne zoonotic pathogen that causes swine streptococcosis, which threatens human health and brings economic loss to the swine industry. Three-quarters of human S. suis infections are caused by serotype 2. A retrospective analysis of human S. suis cases in Shenzhen, a megacity in China, with high pork consumption, between 2005 and 2021 was conducted to understand its genomic epidemiology, pathogen virulence, and drug resistance characteristics. The epidemiological investigation showed that human cases of S. suis in Shenzhen were mainly associated with people who had been in close contact with raw pork or other swine products. Whole-genome sequence analysis showed that 33 human isolates in Shenzhen were dominated by serotype 2 (75.76%), followed by serotype 14 (24.24%), and the most prevalent sequence types (STs) were ST7 (48.48%) and ST1 (39.40%). ST242 (9.09%) and ST25 (3.03%), which were rarely reported, were also found. Phylogenetic analysis showed that the Shenzhen human isolates had close genetic relatedness to isolates from Guangxi (China), Sichuan (China), and Vietnam. We found a new 82 KB pathogenicity island (PAI) in the serotype 2 isolate that may play a role in sepsis. Similarly, a serotype 14 isolate, containing 78 KB PAI, was isolated from a patient presenting with streptococcal toxic shock syndrome (STSLS) who subsequently died. Multi-drug resistance (MDR) was high in human isolates of S. suis from Shenzhen. Most human isolates were resistant to tetracycline, streptomycin, erythromycin, and clindamycin, and 13 isolates had intermediate resistance to penicillin. In conclusion, swine importation from Guangxi, Sichuan, and Vietnam should be more closely monitored, and the use of antibiotics limited to reduce the potential for antimicrobial resistance (AMR)
- …