18,411 research outputs found

    Reducing variance in univariate smoothing

    Full text link
    A variance reduction technique in nonparametric smoothing is proposed: at each point of estimation, form a linear combination of a preliminary estimator evaluated at nearby points with the coefficients specified so that the asymptotic bias remains unchanged. The nearby points are chosen to maximize the variance reduction. We study in detail the case of univariate local linear regression. While the new estimator retains many advantages of the local linear estimator, it has appealing asymptotic relative efficiencies. Bandwidth selection rules are available by a simple constant factor adjustment of those for local linear estimation. A simulation study indicates that the finite sample relative efficiency often matches the asymptotic relative efficiency for moderate sample sizes. This technique is very general and has a wide range of applications.Comment: Published at http://dx.doi.org/10.1214/009053606000001398 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Solving the Traffic Problem by Using A Simulation Model

    Get PDF
    This paper presents a traffic light simulation model, which is composed of 6 submodels coded in Arena to help analyze the traffic problem. The model adopts average arrival time and average departure time to simulate the arrival and leaving number of cars on roads. In the experiment, each submodel represents a road that has 3 intersections. The simulation results show that different traffic light duration policies will cause different effects on traffic congestion. Therefore, we can use this model to obtain a good traffic light duration policy for solving the traffic problem

    The Luminosity - E_p Relation within Gamma--Ray Bursts and Implications for Fireball Models

    Full text link
    Using a sample of 2408 time-resolved spectra for 91 BATSE gamma-ray bursts (GRBs) presented by Preece et al., we show that the relation between the isotropic-equivalent luminosity (L_iso) and the spectral peak energy (E_p) in the cosmological rest frame, L_iso \propto E_p^2, not only holds within these bursts, but also holds among these GRBs, assuming that the burst rate as a function of redshift is proportional to the star formation rate. The possible implications of this relation for the emission models of GRBs are discussed. We suggest that both the kinetic-energy-dominated internal shock model and the magnetic-dissipation-dominated external shock model can well interpret this relation. We constrain the parameters for these two models, and find that they are in a good agreement with the parameters from the fittings to the afterglow data (abridged).Comment: 3 pages plus 5 figures, emulateapj style, accepted for publication in ApJ Letter

    A General Theorem Relating the Bulk Topological Number to Edge States in Two-dimensional Insulators

    Full text link
    We prove a general theorem on the relation between the bulk topological quantum number and the edge states in two dimensional insulators. It is shown that whenever there is a topological order in bulk, characterized by a non-vanishing Chern number, even if it is defined for a non-conserved quantity such as spin in the case of the spin Hall effect, one can always infer the existence of gapless edge states under certain twisted boundary conditions that allow tunneling between edges. This relation is robust against disorder and interactions, and it provides a unified topological classification of both the quantum (charge) Hall effect and the quantum spin Hall effect. In addition, it reconciles the apparent conflict between the stability of bulk topological order and the instability of gapless edge states in systems with open boundaries (as known happening in the spin Hall case). The consequences of time reversal invariance for bulk topological order and edge state dynamics are further studied in the present framework.Comment: A mistake corrected in reference

    Measurement of the topological surface state optical conductance in bulk-insulating Sn-doped Bi1.1_{1.1}Sb0.9_{0.9}Te2_2S single crystals

    Full text link
    Topological surface states have been extensively observed via optics in thin films of topological insulators. However, in typical thick single crystals of these materials, bulk states are dominant and it is difficult for optics to verify the existence of topological surface states definitively. In this work, we studied the charge dynamics of the newly formulated bulk-insulating Sn-doped Bi1.1_{1.1}Sb0.9_{0.9}Te2_2S crystal by using time-domain terahertz spectroscopy. This compound shows much better insulating behavior than any other bulk-insulating topological insulators reported previously. The transmission can be enhanced an amount which is 5%\% of the zero-field transmission by applying magnetic field to 7 T, an effect which we believe is due to the suppression of topological surface states. This suppression is essentially independent of the thicknesses of the samples, showing the two-dimensional nature of the transport. The suppression of surface states in field allows us to use the crystal slab itself as a reference sample to extract the surface conductance, mobility, charge density and scattering rate. Our measurements set the stage for the investigation of phenomena out of the semi-classical regime, such as the topological magneto-electric effect.Comment: 5 pages, 3 figures, submitted in Augus

    A new time-frequency method to reveal quantum dynamics of atomic hydrogen in intense laser pulses: Synchrosqueezing Transform

    Get PDF
    This study introduces a new adaptive time-frequency (TF) analysis technique, synchrosqueezing transform (SST), to explore the dynamics of a laser-driven hydrogen atom at an {\it ab initio} level, upon which we have demonstrated its versatility as a new viable venue for further exploring quantum dynamics. For a signal composed of oscillatory components which can be characterized by instantaneous frequency, the SST enables rendering the decomposed signal based on the phase information inherited in the linear TF representation with mathematical support. Compared with the classical type TF methods, the SST clearly depicts several intrinsic quantum dynamical processes such as selection rules, AC Stark effects, and high harmonic generation
    • …
    corecore