13 research outputs found

    Prognostic value of elevated lipoprotein (a) in patients with acute coronary syndromes: a systematic review and meta-analysis

    Get PDF
    BackgroundElevated lipoprotein (a) level was recognized as an independent risk factor for significant adverse cardiovascular events in acute coronary syndrome (ACS) patients. Despite this recognition, the consensus in the literature regarding the prognostic significance of elevated lipoprotein (a) in ACS was also limited. Consequently, we conducted a thorough systematic review and meta-analysis to evaluate the prognostic relevance of elevated lipoprotein (a) level in individuals diagnosed with ACS.Methods and resultsA thorough literature review was conducted by systematically searching PubMed, Embase, and Cochrane databases until September 2023. This review specifically examined cohort studies exploring the prognostic implications of elevated lipoprotein (a) level in relation to major adverse cardiovascular events (MACE), including death, stroke, non-fatal myocardial infarction (MI), and coronary revascularization, in patients with ACS. The meta-analysis utilized aggregated multivariable hazard ratios (HR) and their respective 95% confidence intervals (CI) to evaluate prognostic implications between high and low lipoprotein (a) levels [the cut-off of high lipoprotein (a) level varies from 12.5 to 60 mg/dl]. Among 18,168 patients in the identified studies, elevated lipoprotein (a) was independently associated with increased MACE risk (HR 1.26; 95% CI: 1.17–1.35, P < 0.00001) and all-cause mortality (HR 1.36; 95% CI: 1.05–1.76, P = 0.02) in ACS patients. In summary, elevated lipoprotein (a) levels independently forecast MACE and all-cause mortality in ACS patients. Assessing lipoprotein (a) levels appears promising for risk stratification in ACS, offering valuable insights for tailoring secondary prevention strategies.Systematic Review RegistrationPROSPERO (CRD42023476543)

    Preclinical evidence of the enhanced effectiveness of combined rapamycin and AICAR in reducing kidney cancer

    No full text
    Loss of Von Hippel‐Lindau in renal carcinoma cells results in upregulation of the activity of hypoxia‐inducible factor (HIF‐α), a major transcription factor involved in kidney cancer. Rapamycin as mammalian target of rapamycin inhibitor and 5‐aminoimidazole‐4‐carboxamide‐riboside (AICAR) as AMPK activator are used separately to treat cancer patients. In the current study, the possible additive effect of drug combinations in reducing kidney tumorigenesis was investigated. Treatment with drug combinations significantly decreased cell proliferation, increased cell apoptosis, and abolished Akt phosphorylation and HIF‐2α expression in renal cell carcinoma cells, including primary cells isolated from kidney cancer patients. Significant decreases in cell migration and invasion were detected using drug combinations. Drug combinations effectively abolished binding of HIF‐2α to the Akt promoter and effected formation of the DNA‐protein complex in nuclear extracts from 786‐O cells, as demonstrated using electromobility shift assay and examination of Akt promoter activity. Importantly, we tested the effect of each drug and the combined drugs on kidney tumor size in the nude mouse model. Our data show that treatment with rapamycin, AICAR, and rapamycin+AICAR decreased tumor size by 38%, 36%, and 80%, respectively, suggesting that drug combinations have an additive effect in reducing tumor size compared with use of each drug alone. Drug combinations effectively decreased cell proliferation, increased apoptotic cells, and significantly decreased p‐Akt, HIF‐2α, and vascular endothelial growth factor expression in tumor kidney tissues from mice. These results show for the first time that drug combinations are more effective than single drugs in reducing kidney tumor progression. This study provides important evidence that may lead to the initiation of pre‐clinical trials in patients with kidney cancer

    Novel protective mechanism of reducing renal cell damage in diabetes: Activation AMPK by AICAR increased NRF2/OGG1 proteins and reduced oxidative DNA damage

    No full text
    Exposure of renal cells to high glucose (HG) during diabetes has been recently proposed to be involved in renal injury. In the present study, we investigated a potential mechanism by which AICAR treatment regulates the DNA repair enzyme, 8-oxoG-DNA glycosylase (OGG1) in renal proximal tubular mouse cells exposed to HG and in kidney of db/db mice. Cells treated with HG for 2 days show inhibition in OGG1 promoter activity as well as OGG1 and Nrf2 protein expression. In addition, activation of AMPK by AICAR resulted in an increase raptor phosphorylation at Ser(792) and leads to increase the promoter activity of OGG1 through upregulation of Nrf2. Downregulation of AMPK by DN-AMPK and raptor and Nrf2 by siRNA resulted in significant decease in promoter activity and protein expression of OGG1. On the other hand, downregulation of Akt by DN-Akt and rictor by siRNA resulted in significant increase in promoter activity and protein expression of Nrf2 and OGG1. Moreover, gel shift analysis shows reduction of Nrf2 binding to OGG1 promoter in cells treated with HG while cells treated with AICAR reversed the effect of HG. Furthermore, db/db mice treated with AICAR show significant increased in AMPK and raptor phosphroylation as well as OGG1 and Nrf2 protein expression that associated with significant decrease in oxidative DNA damage (8-oxodG) compared to non-treated mice. In summary, our data provide a novel protective mechanism by which AICAR prevents renal cell damage in diabetes and the consequence complications of hyperglycemia with a specific focus on nephropathy

    Glutamine addiction in kidney cancer suppresses oxidative stress and can be exploited for real-time imaging

    No full text
    Many cancers appear to activate intrinsic antioxidant systems as a means to counteract oxidative stress. Some cancers, such as clear cell renal cell carcinoma (ccRCC), require exogenous glutamine for growth and exhibit reprogrammed glutamine metabolism, at least in part due to the glutathione pathway, an efficient cellular buffering system that counteracts reactive oxygen species and other oxidants. We show here that ccRCC xenograft tumors under the renal capsule exhibit enhanced oxidative stress compared with adjacent normal tissue and the contralateral kidney. Upon glutaminase inhibition with CB-839 or BPTES, the RCC cell lines SN12PM-6-1 (SN12) and 786-O exhibited decreased survival and pronounced apoptosis associated with a decreased GSH/GSSG ratio, augmented nuclear factor erythroid-related factor 2, and increased 8-oxo-7,8-dihydro-2'-deoxyguanosine, a marker of DNA damage. SN12 tumor xenografts showed decreased growth when treated with CB-839. Furthermore, PET imaging confirmed that ccRCC tumors exhibited increased tumoral uptake of 18F-(2S,4R)4-fluoroglutamine compared with the kidney in the orthotopic mouse model. This technique can be utilized to follow changes in ccRCC metabolism in vivo Further development of these paradigms will lead to new treatment options with glutaminase inhibitors and the utility of PET to identify and manage patients with ccRCC who are likely to respond to glutaminase inhibitors in the clinic. Cancer Res; 77(23); 6746-58. ©2017 AACR
    corecore