1,449 research outputs found
Transmission characteristics of a Fabry-Perot etalon-microtoroid resonator coupled system
The transmission spectra of a Fabry-Perot etalon coupled to a microtoroid resonator are studied theoretically and experimentally. The resonance line shapes depend strongly on the resonance wavelength detuning and coupling strength between the two resonators. A wide variety of line shapes, ranging from a single to triple peaks, symmetric to asymmetric Fano-like peaks, and notches were predicted and observed experimentally. The capability to modify the spectral line shapes by tuning the coupling between or losses of two resonators may find applications in optical filtering, switching, sensing, and dispersion engineering
Spectral analysis of Gene co-expression network of Zebrafish
We analyze the gene expression data of Zebrafish under the combined framework
of complex networks and random matrix theory. The nearest neighbor spacing
distribution of the corresponding matrix spectra follows random matrix
predictions of Gaussian orthogonal statistics. Based on the eigenvector
analysis we can divide the spectra into two parts, first part for which the
eigenvector localization properties match with the random matrix theory
predictions, and the second part for which they show deviation from the theory
and hence are useful to understand the system dependent properties. Spectra
with the localized eigenvectors can be characterized into three groups based on
the eigenvalues. We explore the position of localized nodes from these
different categories. Using an overlap measure, we find that the top
contributing nodes in the different groups carry distinguished structural
features. Furthermore, the top contributing nodes of the different localized
eigenvectors corresponding to the lower eigenvalue regime form different
densely connected structure well separated from each other. Preliminary
biological interpretation of the genes, associated with the top contributing
nodes in the localized eigenvectors, suggests that the genes corresponding to
same vector share common features.Comment: 6 pages, four figures (accepted in EPL
Observational and model evidence for a prominent stratospheric influence on variability in tropospheric nitrous oxide
The literature presents different views on how the stratosphere influences variability in surface nitrous oxide (N2O) and on whether that influence is outweighed by surface emission changes driven by the El
Niño–Southern Oscillation (ENSO). These questions are investigated using a chemistry–climate model with a
stratospheric N2O tracer; surface and aircraft-based N2O measurements; and indices for ENSO, polar lower
stratospheric temperature (PLST), and the stratospheric quasi-biennial oscillation (QBO). The model simulates
well-defined seasonal cycles in tropospheric N2O that are caused mainly by the seasonal descent of N2O-poor
stratospheric air in polar regions with subsequent cross-tropopause transport and mixing. Similar seasonal cycles
are identified in recently available N2O data from aircraft. A correlation analysis between the N2O atmospheric
growth rate (AGR) anomaly in long-term surface monitoring data and the ENSO, PLST, and QBO indices reveals
hemispheric differences. In the Northern Hemisphere, the surface N2O AGR is negatively correlated with winter
(January–March) PLST. This correlation is consistent with an influence from the Brewer–Dobson circulation,
which brings N2O-poor air from the middle and upper stratosphere into the lower stratosphere with associated
warming due to diabatic descent. In the Southern Hemisphere, the N2O AGR is better correlated to QBO and
ENSO indices. These different hemispheric influences on the N2O AGR are consistent with known atmospheric
dynamics and the complex interaction of the QBO with the Brewer-Dobson circulation. More airborne surveys
extending to the tropopause would help elucidate the stratospheric influence on tropospheric N2O, allowing for
better understanding of surface sources.This research has been supported by the Earth
Sciences Division (grant no. 80NSSC17K0350)
Population Structure and Multidrug Resistance of Non-O1/Non-O139 Vibrio cholerae in Freshwater Rivers in Zhejiang, China
To understand the environmental reservoirs of Vibrio cholerae and their public health significance, we surveyed freshwater samples from rivers in two cities (Jiaxing [JX] and Jiande [JD]) in Zhejiang, China. A total of 26 sampling locations were selected, and river water was sampled 456 times from 2015 to 2016 yielding 200 V. cholerae isolates, all of which were non-O1/non-O139. The average isolation rate was 47.3% and 39.1% in JX and JD, respectively. Antibiotic resistance profiles of the V. cholerae isolates were examined with nonsusceptibility to cefazolin (68.70%, 79/115) being most common, followed by ampicillin (47.83%, 55/115) and imipenem (27.83%, 32/115). Forty-two isolates (36.52%, 42/115) were defined as multidrug resistant (MDR). The presence of virulence genes was also determined, and the majority of the isolates were positive for toxR (198/200, 99%) and hlyA (196/200, 98%) with few other virulence genes observed. The population structure of the V. cholerae non-O1/non-O139 sampled was examined using multilocus sequence typing (MLST) with 200 isolates assigned to 128 STs and 6 subpopulations. The non-O1/non-O139 V. cholerae population in JX was more varied than in JD. By clonal complexes (CCs), 31 CCs that contained isolates from this study were shared with other parts of China and/or other countries, suggesting widespread presence of some non-O1/non-O139 clones. Drug resistance profiles differed between subpopulations. The findings suggest that non-O1/non-O139 V. cholerae in the freshwater environment is a potential source of human infections. Routine surveillance of non-O1/non-O139 V. cholerae in freshwater rivers will be of importance to public health
Natural product (L)-gossypol inhibits colon cancer cell growth by targeting RNA-binding protein Musashi-1
Musashi-1 (MSI1) is an RNA-binding protein that acts as a translation activator or repressor of target mRNAs. The best-characterized MSI1 target is Numb mRNA, whose encoded protein negatively regulates Notch signaling. Additional MSI1 targets include the mRNAs for the tumor suppressor protein APC that regulates Wnt signaling and the cyclin-dependent kinase inhibitor P21WAF−1. We hypothesized that increased expression of NUMB, P21 and APC, through inhibition of MSI1 RNA-binding activity might be an effective way to simultaneously downregulate Wnt and Notch signaling, thus blocking the growth of a broad range of cancer cells. We used a fluorescence polarization assay to screen for small molecules that disrupt the binding of MSI1 to its consensus RNA binding site. One of the top hits was (−)-gossypol (Ki = 476 ± 273 nM), a natural product from cottonseed, known to have potent anti-tumor activity and which has recently completed Phase IIb clinical trials for prostate cancer. Surface plasmon resonance and nuclear magnetic resonance studies demonstrate a direct interaction of (−)-gossypol with the RNA binding pocket of MSI1. We further showed that (−)-gossypol reduces Notch/Wnt signaling in several colon cancer cell lines having high levels of MSI1, with reduced SURVIVIN expression and increased apoptosis/autophagy. Finally, we showed that orally administered (−)-gossypol inhibits colon cancer growth in a mouse xenograft model. Our study identifies (−)-gossypol as a potential small molecule inhibitor of MSI1-RNA interaction, and suggests that inhibition of MSI1's RNA binding activity may be an effective anti-cancer strategy
A Randomised Placebo-Controlled Trial of a Traditional Chinese Herbal Formula in the Treatment of Primary Dysmenorrhoea
BACKGROUND: Most traditional Chinese herbal formulas consist of at least four herbs. Four-Agents-Decoction (Si Wu Tang) is a documented eight hundred year old formula containing four herbs and has been widely used to relieve menstrual discomfort in Taiwan. However, no specific effect had been systematically evaluated. We applied Western methodology to assess its effectiveness and safety for primary dysmenorrhoea and to evaluate the compliance and feasibility for a future trial. METHODOLOGY/PRINCIPAL FINDINGS: A randomised, double-blind, placebo-controlled, pilot clinical trial was conducted in an ad hoc clinic setting at a teaching hospital in Taipei, Taiwan. Seventy-eight primary dysmenorrheic young women were enrolled after 326 women with self-reported menstrual discomfort in the Taipei metropolitan area of Taiwan were screened by a questionnaire and subsequently diagnosed by two gynaecologists concurrently with pelvic ultrasonography. A dosage of 15 odorless capsules daily for five days starting from the onset of bleeding or pain was administered. Participants were followed with two to four cycles for an initial washout interval, one to two baseline cycles, three to four treatment cycles, and three follow-up cycles. Study outcome was pain intensity measured by using unmarked horizontal visual analog pain scale in an online daily diary submitted directly by the participants for 5 days starting from the onset of bleeding or pain of each menstrual cycle. Overall-pain was the average pain intensity among days in pain and peak-pain was the maximal single-day pain intensity. At the end of treatment, both the overall-pain and peak-pain decreased in the Four-Agents-Decoction (Si Wu Tang) group and increased in the placebo group; however, the differences between the two groups were not statistically significant. The trends persisted to follow-up phase. Statistically significant differences in both peak-pain and overall-pain appeared in the first follow-up cycle, at which the reduced peak-pain in the Four-Agents-Decoction (Si Wu Tang) group did not differ significantly by treatment length. However, the reduced peak-pain did differ profoundly among women treated for four menstrual cycles (2.69 (2.06) cm, mean (standard deviation), for the 20 women with Four-Agents-Decoction and 4.68 (3.16) for the 22 women with placebo, p = .020.) There was no difference in adverse symptoms between the Four-Agents-Decoction (Si Wu Tang) and placebo groups. CONCLUSION/SIGNIFICANCE: Four-Agents-Decoction (Si Wu Tang) therapy in this pilot post-market clinical trial, while meeting the standards of conventional medicine, showed no statistically significant difference in reducing menstrual pain intensity of primary dysmenorrhoea at the end of treatment. Its use, with our dosage regimen and treatment length, was not associated with adverse reactions. The finding of statistically significant pain-reducing effect in the first follow-up cycle was unexpected and warrants further study. A larger similar trial among primary dysmenorrheic young women with longer treatment phase and multiple batched study products can determine the definitive efficacy of this historically documented formula. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN23374750
Luminescence tuning of MOFs via ligand to metal and metal to metal energy transfer by co-doping of 2∞[Gd2Cl6(bipy)3]*2bipy with europium and terbium
The series of anhydrous lanthanide chlorides LnCl3, Ln=Pr–Tb, and 4,4'-bipyridine (bipy) constitute isotypic MOFs of the formula 2∞[Ln2Cl6(bipy)3]*2bipy. The europium and terbium containing compounds both exhibit luminescence of the referring trivalent lanthanide ions, giving a red luminescence for Eu3+ and a green luminescence for Tb3+ triggered by an efficient antenna effect of the 4,4'-bipyridine linkers. Mixing of different lanthanides in one MOF structure was undertaken to investigate the potential of this MOF system for colour tuning of the luminescence. Based on the gadolinium containing compound, co-doping with different amounts of europium and terbium proves successful and yields solid solutions of the formula 2∞[Gd2-x-yEuxTbyCl6(bipy)3]*2bipy (1–8), 0≤x, y≤0.5. The series of MOFs exhibits the opportunity of tuning the emission colour in-between green and red. Depending on the atomic ratio Gd:Eu:Tb, the yellow region was covered for the first time for an oxygen/carboxylate-free MOF system. In addition to a ligand to metal energy transfer (LMET) from the lowest ligand-centered triplet state of 4,4'-bipyridine, a metal to metal energy transfer (MMET) between 4f-levels from Tb3+ to Eu3+ is as well vital for the emission colour. However, no involvement of Gd3+ in energy transfers is observed rendering it a suitable host lattice ion and connectivity centre for diluting the other two rare earth ions in the solid state. The materials retain their luminescence during activation of the MOFs for microporosity
Interleukin-17 Contributes to the Pathogenesis of Autoimmune Hepatitis through Inducing Hepatic Interleukin-6 Expression
T helper cells that produce IL-17 (Th17 cells) have recently been identified as the third distinct subset of effector T cells. Emerging data suggests that Th17 cells play an important role in the pathogenesis of many liver diseases by regulating innate immunity, adaptive immunity, and autoimmunity. In this study, we examine the role and mechanism of Th17 cells in the pathogenesis of autoimmune hepatitis (AIH). The serum levels of IL-17 and IL-23, as well as the frequency of IL-17+ cells in the liver, were significantly elevated in patients with AIH, compared to other chronic hepatitis and healthy controls. The hepatic expressions of IL-17, IL-23, ROR-γt, IL-6 and IL-1β in patients with AIH were also significantly increased and were associated with increased inflammation and fibrosis. IL-17 induces IL-6 expression via the MAPK signaling pathway in hepatocytes, which, in turn, may further stimulate Th17 cells and forms a positive feedback loop. In conclusion, Th17 cells are key effector T cells that regulate the pathogenesis of AIH, via induction of MAPK dependent hepatic IL-6 expression. Blocking the signaling pathway and interrupting the positive feedback loop are potential therapeutic targets for autoimmune hepatitis
Recommended from our members
Frequency and longitudinal clinical outcomes of Alzheimer's AT(N) biomarker profiles: A longitudinal study.
INTRODUCTION: We aimed to estimate the frequency of each AT(N) (β-amyloid deposition [A], pathologic tau [T], and neurodegeneration [N]) profile in different clinical diagnosis groups and to describe the longitudinal change in clinical outcomes of individuals in each group. METHODS: Longitudinal change in clinical outcomes and conversion risk of AT(N) profiles are assessed using linear mixed-effects models and multivariate Cox proportional-hazard models, respectively. RESULTS: Participants with A+T+N+ showed faster clinical progression than those with A-T-N- and A+T±N-. Compared with A-T-N-, participants with A+T+N± had an increased risk of conversion from cognitively normal (CN) to incident prodromal stage of Alzheimer's disease (AD), and from MCI to AD dementia. A+T+N+ showed an increased conversion risk when compared with A+T±N-. DISCUSSION: The 2018 research framework may provide prognostic information of clinical change and progression. It may also be useful for targeted recruitment of participants with AD into clinical trials
- …