6,273 research outputs found
Heat engine in the three-dimensional spacetime
We define a kind of heat engine via three-dimensional charged BTZ black
holes. This case is quite subtle and needs to be more careful. The heat flow
along the isochores does not equal to zero since the specific heat
and this point completely differs from the cases discussed before whose
isochores and adiabats are identical. So one cannot simply apply the paradigm
in the former literatures. However, if one introduces a new thermodynamic
parameter associated with the renormalization length scale, the above problem
can be solved. We obtain the analytical efficiency expression of the
three-dimensional charged BTZ black hole heat engine for two different schemes.
Moreover, we double check with the exact formula. Our result presents the first
specific example for the sound correctness of the exact efficiency formula. We
argue that the three-dimensional charged BTZ black hole can be viewed as a toy
model for further investigation of holographic heat engine. Furthermore, we
compare our result with that of the Carnot cycle and extend the former result
to three-dimensional spacetime. In this sense, the result in this paper would
be complementary to those obtained in four-dimensional spacetime or ever
higher. Last but not the least, the heat engine efficiency discussed in this
paper may serve as a criterion to discriminate the two thermodynamic approaches
introduced in Ref.[29] and our result seems to support the approach which
introduces a new thermodynamic parameter .Comment: Revised version. Discussions adde
A micromechanical model on specific damping capacity caused by micro cracks
Dispersed micro cracks are widely found in engineer materials, e.g. concrete, ceramic and composite. Specific damping capacity (SDC) caused by friction on micro crack surfaces (FSDC) was investigated in this study. Firstly, frictional energy dissipation (FED) of individual micro crack was modeled analytically and it was further validated by unit cell FE approach. Then, the model was employed in macro-scale cantilever beams involving regular and random multi micro cracks respectively. FEDs and FSDCs of the beams with different micro crack angles and densities are predicted. The study indicated that FED (and FSDC) depends on crack angle and stress state in structure. FSDC is independent to magnitudes of load and modulus of material in elastic scope. To materials with low viscosity, damping might increase significantly with the presence of multi micro cracks of high density
Dual Generalized Nonnegative Normal Neutrosophic Bonferroni Mean Operators and Their Application in Multiple Attribute Decision Making
For multiple attribute decision making, ranking and information aggregation problems are increasingly receiving attention. In a normal neutrosophic number, the ranking method does not satisfy the ranking principle
- …