66,489 research outputs found
Impulse Generation by an Open Shock Tube
We perform experimental and numerical studies of a shock tube with an open end. The purpose is to investigate the impulse due to the exhaust of gases through the open end of the tube as a model for a partially filled detonation tube as used in pulse detonation engine testing. We study the effects of the pressure ratio (varied from 3 to 9.2) and the volume ratio (expressed as fill fractions) between the driver and driven section. Two different driver gases, helium and nitrogen, and fill fractions between 5 and 100% are studied; the driven section is filled with air. For both driver gases, increasing the pressure ratio leads to larger specific impulses. The specific impulse increases for a decreasing fill fraction for the helium driver, but the impulse is almost independent of the fill fraction for the nitrogen driver. Two-dimensional (axisymmetric) numerical simulations are carried out for both driver gases. The simulation results show reasonable agreement with experimental measurements at high pressure ratios or small fill fractions, but there are substantial discrepancies for the smallest pressure ratios studied. Empirical models for the impulse in the limits of large and small fill fractions are also compared with the data. Reasonable agreement is found for the trends with fill fractions using the Gurney or Sato model at large fill fractions, but only Cooperâs bubble model is able to predict the small fill fraction limit. Computations of acoustic impedance and numerical simulations of unsteady gas dynamics indicate that the interaction of waves with the driver-driven gas interface and the propagation of waves in the driven gas play an essential role in the partial-fill effect
Analysis, filtering, and control for Takagi-Sugeno fuzzy models in networked systems
Copyright © 2015 Sunjie Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.The fuzzy logic theory has been proven to be effective in dealing with various nonlinear systems and has a great success in industry applications. Among different kinds of models for fuzzy systems, the so-called Takagi-Sugeno (T-S) fuzzy model has been quite popular due to its convenient and simple dynamic structure as well as its capability of approximating any smooth nonlinear function to any specified accuracy within any compact set. In terms of such a model, the performance analysis and the design of controllers and filters play important roles in the research of fuzzy systems. In this paper, we aim to survey some recent advances on the T-S fuzzy control and filtering problems with various network-induced phenomena. The network-induced phenomena under consideration mainly include communication delays, packet dropouts, signal quantization, and randomly occurring uncertainties (ROUs). With such network-induced phenomena, the developments on T-S fuzzy control and filtering issues are reviewed in detail. In addition, some latest results on this topic are highlighted. In the end, conclusions are drawn and some possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 11301118 and 61174136, the Natural Science Foundation of Jiangsu Province of China under Grant BK20130017, the Fundamental Research Funds for the Central Universities of China under Grant CUSF-DH-D-2013061, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany
Local and Nonlocal Contents in N-qubit generalized GHZ states
We investigate local contents in -qubit generalized Greenberger, Horne,
and Zeilinger (GHZ) states. We suggest a decomposition for correlations in the
GHZ states into a nonlocal and fully local part, and find a lower and upper
bound on the local content. Our lower bound reproduces the previous result for
N=2 [Scarani, Phys. Rev. A. 77, 042112 (2008)] and decreases rapidly with .Comment: 4 pages; 1 figure; figure regenerated; upper bound added; a few more
clarification
Quantum Phase Interference for Quantum Tunneling in Spin Systems
The point-particle-like Hamiltonian of a biaxial spin particle with external
magnetic field along the hard axis is obtained in terms of the potential field
description of spin systems with exact spin-coordinate correspondence. The
Zeeman energy term turns out to be an effective gauge potential which leads to
a nonintegrable pha se of the Euclidean Feynman propagator.
The phase interference between clockwise and anticlockwise under barrier
propagations is recognized explicitly as the Aharonov-Bohm effect. An
additional phase which is significant for quantum phase interference is
discovered with the quantum theory of spin systems besides the known phase
obtained with the semiclassical treatment of spin. We also show the energ y
dependence of the effect and obtain the tunneling splitting at excited states
with the help of periodic instantons.Comment: 19 pages, no figure, to appear in PR
Quantum Phase Transition in Finite-Size Lipkin-Meshkov-Glick Model
Lipkin model of arbitrary particle-number N is studied in terms of exact
differential-operator representation of spin-operators from which we obtain the
low-lying energy spectrum with the instanton method of quantum tunneling. Our
new observation is that the well known quantum phase transition can also occur
in the finite-N model only if N is an odd-number. We furthermore demonstrate a
new type of quantum phase transition characterized by level-crossing which is
induced by the geometric phase interference and is marvelously periodic with
respect to the coupling parameter. Finally the conventional quantum phase
transition is understood intuitively from the tunneling formulation in the
thermodynamic limit.Comment: 4 figure
A versatile microfadometer for lightfastness testing and pigment identification
The design and experimental method for the use of a novel instrument for lightfastness measurements on artwork is presented. The new microfadometer design offers increased durability and portability over the previous, published design, broadening the scope of locations at which data can be acquired. This reduces the need for art handling or transportation in order to gain evidence-based risk assessments for the display of light-sensitive artworks. The instrument focuses a stabilized high powered xenon lamp to a spot 0.25 millimeters (FWHM) while simultaneously monitoring color change. This makes it possible to identify pigments and determine the lightfastness of materials effectively and non-destructively. With 2.59mW or 0.82 lumens (1.7 x107 lux for a 0.25mm focused spot) the instrument is capable of fading Blue Wool 1 to a measured 11 ÎEab value (using CIE standard illuminant D65) in 15 minutes. The temperature increase created by focused radiation was measured to be 3 to 4°C above room temperature. The system was stable within 0.12 ÎEab over 1 hour and 0.31 ÎEab over 7 hours. A safety evaluation of the technique is discussed which concludes that some caution should be employed when fading smooth, uniform areas of artworks. The instrument can also incorporate a linear variable filter. This enables the researcher to identify the active wavebands that cause certain degradation reactions and determine the degree of wavelength dependence of fading. Some preliminary results of fading experiments on Prussian blue samples from the paint box of J. M. W Turner (1755-1851) are presented
Enhancement of Quantum Tunneling for Excited States in Ferromagnetic Particles
A formula suitable for a quantitative evaluation of the tunneling effect in a
ferromagnetic particle is derived with the help of the instanton method. The
tunneling between n-th degenerate states of neighboring wells is dominated by a
periodic pseudoparticle configuration. The low-lying level-splitting previously
obtained with the LSZ method in field theory in which the tunneling is viewed
as the transition of n bosons induced by the usual (vacuum) instanton is
recovered. The observation made with our new result is that the tunneling
effect increases at excited states. The results should be useful in analyzing
results of experimental tests of macroscopic quantum coherence in ferromagnetic
particles.Comment: 18 pages, LaTex, 1 figur
Periodic Bounce for Nucleation Rate at Finite Temperature in Minisuperspace Models
The periodic bounce configurations responsible for quantum tunneling are
obtained explicitly and are extended to the finite energy case for
minisuperspace models of the Universe. As a common feature of the tunneling
models at finite energy considered here we observe that the period of the
bounce increases with energy monotonically. The periodic bounces do not have
bifurcations and make no contribution to the nucleation rate except the one
with zero energy. The sharp first order phase transition from quantum tunneling
to thermal activation is verified with the general criterions.Comment: 17 pages, 5 postscript figures include
- âŠ