188 research outputs found

    Calculation results of optimized design points.

    No full text
    In order to realize the lightweight design of mobile pump truck, this paper takes the frame of a certain type of mobile pump truck as the research object. The response surface method is used to carry out lightweight design of the longitudinal beam structure of the frame, and the finite element method is used to establish the finite element model to compare and analyze the optimized and original designs. The results show that the height, width and thickness of the optimized longitudinal beam section are reduced by 10mm, 11mm, and 0.8mm respectively, and the weight of the whole frame is reduced by 35.8kg. Before and after optimization, the displacement and stress changes of the frame are small in four motion situations, which meet the lightweight requirements of optimization design.</div

    Parameter changes before and after optimization.

    No full text
    In order to realize the lightweight design of mobile pump truck, this paper takes the frame of a certain type of mobile pump truck as the research object. The response surface method is used to carry out lightweight design of the longitudinal beam structure of the frame, and the finite element method is used to establish the finite element model to compare and analyze the optimized and original designs. The results show that the height, width and thickness of the optimized longitudinal beam section are reduced by 10mm, 11mm, and 0.8mm respectively, and the weight of the whole frame is reduced by 35.8kg. Before and after optimization, the displacement and stress changes of the frame are small in four motion situations, which meet the lightweight requirements of optimization design.</div

    Shape of longitudinal beam section.

    No full text
    In order to realize the lightweight design of mobile pump truck, this paper takes the frame of a certain type of mobile pump truck as the research object. The response surface method is used to carry out lightweight design of the longitudinal beam structure of the frame, and the finite element method is used to establish the finite element model to compare and analyze the optimized and original designs. The results show that the height, width and thickness of the optimized longitudinal beam section are reduced by 10mm, 11mm, and 0.8mm respectively, and the weight of the whole frame is reduced by 35.8kg. Before and after optimization, the displacement and stress changes of the frame are small in four motion situations, which meet the lightweight requirements of optimization design.</div

    Frame material parameters.

    No full text
    In order to realize the lightweight design of mobile pump truck, this paper takes the frame of a certain type of mobile pump truck as the research object. The response surface method is used to carry out lightweight design of the longitudinal beam structure of the frame, and the finite element method is used to establish the finite element model to compare and analyze the optimized and original designs. The results show that the height, width and thickness of the optimized longitudinal beam section are reduced by 10mm, 11mm, and 0.8mm respectively, and the weight of the whole frame is reduced by 35.8kg. Before and after optimization, the displacement and stress changes of the frame are small in four motion situations, which meet the lightweight requirements of optimization design.</div

    Displacement comparison curves of main components under braking condition.

    No full text
    (a) Contrast curve of axle displacement (b) Contrast curve of crossbeam displacement (c) Contrast curve of longitudinal beam displacement.</p

    Schematic diagram of the monitoring path.

    No full text
    In order to realize the lightweight design of mobile pump truck, this paper takes the frame of a certain type of mobile pump truck as the research object. The response surface method is used to carry out lightweight design of the longitudinal beam structure of the frame, and the finite element method is used to establish the finite element model to compare and analyze the optimized and original designs. The results show that the height, width and thickness of the optimized longitudinal beam section are reduced by 10mm, 11mm, and 0.8mm respectively, and the weight of the whole frame is reduced by 35.8kg. Before and after optimization, the displacement and stress changes of the frame are small in four motion situations, which meet the lightweight requirements of optimization design.</div

    Displacement comparison curves of main components under torsion condition.

    No full text
    (a) Contrast curve of axle displacement (b) Contrast curve of crossbeam displacement (c) Contrast curve of longitudinal beam displacement.</p

    Meshing of vehicle body.

    No full text
    (a) Overall meshing, (b) Local meshing of the front axle, (c) Local meshing of the rear axle.</p

    Candidate optimal design points.

    No full text
    In order to realize the lightweight design of mobile pump truck, this paper takes the frame of a certain type of mobile pump truck as the research object. The response surface method is used to carry out lightweight design of the longitudinal beam structure of the frame, and the finite element method is used to establish the finite element model to compare and analyze the optimized and original designs. The results show that the height, width and thickness of the optimized longitudinal beam section are reduced by 10mm, 11mm, and 0.8mm respectively, and the weight of the whole frame is reduced by 35.8kg. Before and after optimization, the displacement and stress changes of the frame are small in four motion situations, which meet the lightweight requirements of optimization design.</div

    Stress comparison curves of main components under bending conditions.

    No full text
    (a) Contrast curve of axle stress (b) Contrast curve of crossbeam stress (c) Comparison curve of longitudinal beam stress.</p
    • …
    corecore