93,065 research outputs found

    Spin content of Lambda and its longitudinal polarization in e+ee^+e^- annihilation at high energies

    Get PDF
    Longitudinal polarization of Lambda produced in e+ee^+e^- annihilation at LEP energies is calculated in a picture for the spin content of Lambda which is consistent with the polarized deep inelastic lepton-nucleon scattering data and SU(3) flavor symmetry for hyperon decay so that the spin of Lambda is not completely carried by its ss-valence quark. A comparison with the recent ALEPH data and the results of earlier calculations based on the static quark model in which the spin of Lambda is completely determined by the ss-quark is given. The result shows that further measurements of such polarization should provide useful information to the question of which picture is more suitable in describing the spin effects in the fragmentation processes.Comment: 12 pages, 2 figure

    Single spin asymmetries in inclusive high energy hadron-hadron collision processes

    Get PDF
    It has been realized for quite a long time that single-spin experiments, in which one of the colliding objects is transversely polarized, can be helpful in studying the properties of strong interaction in general and in testing Quantum Chromodynamics (QCD) in particular. Striking effects have been observed in the past few years which deviate drastically from the expectation of the perturbative QCD parton model. These effects have received much attention. New experiments of the similar type are underway and/or planned. Different theoretical attempts have been made to understand these effects. In this review, the special role played by singly polarized high-energy hadron-hadron collisions in High Energy Spin Physics is emphasized. Characteristics of the available data for inclusive hadron productions are briefly summarized. Different theoretical approaches for such processes are reviewed with special attention to a non-perturbative model which explicitly takes the orbital motion of the valence quarks and hadronic surface effects into account. The connection between such asymmetries and hyperon polarization in unpolarized reactions is discussed. An example of the possible application of such experimental results in other processes is given.Comment: 62 pages, 17 ps-figures (Review article to appear in Inter. J. Mod. Phys. A

    A Fully Convolutional Tri-branch Network (FCTN) for Domain Adaptation

    Full text link
    A domain adaptation method for urban scene segmentation is proposed in this work. We develop a fully convolutional tri-branch network, where two branches assign pseudo labels to images in the unlabeled target domain while the third branch is trained with supervision based on images in the pseudo-labeled target domain. The re-labeling and re-training processes alternate. With this design, the tri-branch network learns target-specific discriminative representations progressively and, as a result, the cross-domain capability of the segmenter improves. We evaluate the proposed network on large-scale domain adaptation experiments using both synthetic (GTA) and real (Cityscapes) images. It is shown that our solution achieves the state-of-the-art performance and it outperforms previous methods by a significant margin.Comment: Accepted by ICASSP 201

    TOFEC: Achieving Optimal Throughput-Delay Trade-off of Cloud Storage Using Erasure Codes

    Full text link
    Our paper presents solutions using erasure coding, parallel connections to storage cloud and limited chunking (i.e., dividing the object into a few smaller segments) together to significantly improve the delay performance of uploading and downloading data in and out of cloud storage. TOFEC is a strategy that helps front-end proxy adapt to level of workload by treating scalable cloud storage (e.g. Amazon S3) as a shared resource requiring admission control. Under light workloads, TOFEC creates more smaller chunks and uses more parallel connections per file, minimizing service delay. Under heavy workloads, TOFEC automatically reduces the level of chunking (fewer chunks with increased size) and uses fewer parallel connections to reduce overhead, resulting in higher throughput and preventing queueing delay. Our trace-driven simulation results show that TOFEC's adaptation mechanism converges to an appropriate code that provides the optimal delay-throughput trade-off without reducing system capacity. Compared to a non-adaptive strategy optimized for throughput, TOFEC delivers 2.5x lower latency under light workloads; compared to a non-adaptive strategy optimized for latency, TOFEC can scale to support over 3x as many requests

    Time-dependent quantum transport and power-law decay of the transient current in a nano-relay and nano-oscillator

    Full text link
    Time-dependent nonequilibrium Green's functions are used to study electron transport properties in a device consisting of two linear chain leads and a time-dependent interleads coupling that is switched on non-adiabatically. We derive a numerically exact expression for the particle current and examine its characteristics as it evolves in time from the transient regime to the long-time steady-state regime. We find that just after switch-on the current initially overshoots the expected long-time steady-state value, oscillates and decays as a power law, and eventually settles to a steady-state value consistent with the value calculated using the Landauer formula. The power-law parameters depend on the values of the applied bias voltage, the strength of the couplings, and the speed of the switch-on. In particular, the oscillating transient current decays away longer for lower bias voltages. Furthermore, the power-law decay nature of the current suggests an equivalent series resistor-inductor-capacitor circuit wherein all of the components have time-dependent properties. Such dynamical resistive, inductive, and capacitive influences are generic in nano-circuites where dynamical switches are incorporated. We also examine the characteristics of the dynamical current in a nano-oscillator modeled by introducing a sinusoidally modulated interleads coupling between the two leads. We find that the current does not strictly follow the sinusoidal form of the coupling. In particular, the maximum current does not occur during times when the leads are exactly aligned. Instead, the times when the maximum current occurs depend on the values of the bias potential, nearest-neighbor coupling, and the interleads coupling.Comment: version accepted for publication in JA

    MP 2012-01

    Get PDF
    In 1994 the University of Alaska Fairbanks, School of Natural Resources and Agricultural Sciences, Agricultural and Forestry Experiment Station began a project to establish permanent sample plots (PSP) throughout the forests of northern and southcentral Alaska. Objectives of the project are to establish and maintain a system of PSPs to monitor forest growth, yield, forest health, and ecological conditions/change (Malone et al., 2009). To date, 603 PSPs have been established on 201 sites throughout interior and southcentral Alaska. The PSPs are square and 0.1 acre in size and in clusters of three. PSPs are remeasured at a five-year interval. The number of plot remeasurements after establishment ranges from one to three times. A large amount of data is collected at each site at time of establishment and at subsequent remeasurements. Four databases contain all the data: tree measurement and characteristics, site description, regeneration, and vegetation data. Vegetation data collected on the 0.1 acre PSPs includes species (trees shrub, herb, grass, and non-vascular plants) and cover, an estimate of the amount of the plot covered by the crown of each species (cover class) (Daubenmire, 1959). The vegetation database can be used by land managers and researchers to study species diversity and forest succession in addition to long-term monitoring of forest health. The species listed in Appendix 1 and in the vegetation database are presented by categories: tree, shrub, herb, grass, rush, sedge, fern, club moss, lichen, moss, and liverwort

    Macroscopic Quantum Coherence in Small Antiferromagnetic Particle and the Quantum Interference Effects

    Get PDF
    Starting from the Hamiltonian operator of the noncompensated two-sublattice model of a small antiferromagnetic particle, we derive the effective Lagrangian of a biaxial antiferromagnetic particle in an external magnetic field with the help of spin-coherent-state path integrals. Two unequal level-shifts induced by tunneling through two types of barriers are obtained using the instanton method. The energy spectrum is found from Bloch theory regarding the periodic potential as a superlattice. The external magnetic field indeed removes Kramers' degeneracy, however a new quenching of the energy splitting depending on the applied magnetic field is observed for both integer and half-integer spins due to the quantum interference between transitions through two types of barriers.Comment: 9 pages, Latex, 4 Postscript figure
    corecore