176 research outputs found

    Memory and Computation-Efficient Kernel SVM via Binary Embedding and Ternary Model Coefficients

    Full text link
    Kernel approximation is widely used to scale up kernel SVM training and prediction. However, the memory and computation costs of kernel approximation models are still too high if we want to deploy them on memory-limited devices such as mobile phones, smartwatches, and IoT devices. To address this challenge, we propose a novel memory and computation-efficient kernel SVM model by using both binary embedding and binary model coefficients. First, we propose an efficient way to generate compact binary embedding of the data, preserving the kernel similarity. Second, we propose a simple but effective algorithm to learn a linear classification model with ternary coefficients that can support different types of loss function and regularizer. Our algorithm can achieve better generalization accuracy than existing works on learning binary coefficients since we allow coefficient to be −1-1, 00, or 11 during the training stage, and coefficient 00 can be removed during model inference for binary classification. Moreover, we provide a detailed analysis of the convergence of our algorithm and the inference complexity of our model. The analysis shows that the convergence to a local optimum is guaranteed, and the inference complexity of our model is much lower than other competing methods. Our experimental results on five large real-world datasets have demonstrated that our proposed method can build accurate nonlinear SVM models with memory costs less than 30KB

    Improved Subsampled Randomized Hadamard Transform for Linear SVM

    Full text link
    Subsampled Randomized Hadamard Transform (SRHT), a popular random projection method that can efficiently project a dd-dimensional data into rr-dimensional space (r≪dr \ll d) in O(dlog(d))O(dlog(d)) time, has been widely used to address the challenge of high-dimensionality in machine learning. SRHT works by rotating the input data matrix X∈Rn×d\mathbf{X} \in \mathbb{R}^{n \times d} by Randomized Walsh-Hadamard Transform followed with a subsequent uniform column sampling on the rotated matrix. Despite the advantages of SRHT, one limitation of SRHT is that it generates the new low-dimensional embedding without considering any specific properties of a given dataset. Therefore, this data-independent random projection method may result in inferior and unstable performance when used for a particular machine learning task, e.g., classification. To overcome this limitation, we analyze the effect of using SRHT for random projection in the context of linear SVM classification. Based on our analysis, we propose importance sampling and deterministic top-rr sampling to produce effective low-dimensional embedding instead of uniform sampling SRHT. In addition, we also proposed a new supervised non-uniform sampling method. Our experimental results have demonstrated that our proposed methods can achieve higher classification accuracies than SRHT and other random projection methods on six real-life datasets.Comment: AAAI-2

    Semantic Arithmetic Coding using Synonymous Mappings

    Full text link
    Recent semantic communication methods explore effective ways to expand the communication paradigm and improve the system performance of the communication systems. Nonetheless, the common problem of these methods is that the essence of semantics is not explicitly pointed out and directly utilized. A new epistemology suggests that synonymy, which is revealed as the fundamental feature of semantics, guides the establishment of the semantic information theory from a novel viewpoint. Building on this theoretical basis, this paper proposes a semantic arithmetic coding (SAC) method for semantic lossless compression using intuitive semantic synonymy. By constructing reasonable synonymous mappings and performing arithmetic coding procedures over synonymous sets, SAC can achieve higher compression efficiency for meaning-contained source sequences at the semantic level and thereby approximate the semantic entropy limits. Experimental results on edge texture map compression show an evident improvement in coding efficiency using SAC without semantic losses, compared to traditional arithmetic coding, which demonstrates its effectiveness.Comment: 6 pages, 4 figures. This paper is submitted to the 2024 IEEE International Symposium on Information Theory (ISIT 2024

    Semantic Huffman Coding using Synonymous Mapping

    Full text link
    Semantic communication stands out as a highly promising avenue for future developments in communications. Theoretically, source compression coding based on semantics can achieve lower rates than Shannon entropy. This paper introduces a semantic Huffman coding built upon semantic information theory. By incorporating synonymous mapping and synonymous sets, semantic Huffman coding can achieve shorter average code lengths. Furthermore, we demonstrate that semantic Huffman coding theoretically have the capability to approximate semantic entropy. Experimental results indicate that, under the condition of semantic lossless, semantic Huffman coding exhibits clear advantages in compression efficiency over classical Huffman coding.Comment: 6 pages, 3 figures, this paper is submitted to the 2024 IEEE International Symposium on Information Theory (ISIT 2024

    Compressed sensing in photoacoustic tomography with in vivo experiments

    Get PDF
    The data acquisition speed in photoacoustic computed tomography (PACT) is limited by the laser repetition rate and the number of parallel ultrasound detecting channels. Reconstructing PACT image with a less number of measurements can effectively accelerate the data acquisition and reduce the system cost. Recently emerged Compressed Sensing (CS) theory enables us to reconstruct a compressible image with a small number of projections. This paper adopts the CS theory for reconstruction in PACT. The idea is implemented as a non-linear conjugate gradient descent algorithm and tested with phantom and in vivo experiments

    Monad: Towards Cost-effective Specialization for Chiplet-based Spatial Accelerators

    Full text link
    Advanced packaging offers a new design paradigm in the post-Moore era, where many small chiplets can be assembled into a large system. Based on heterogeneous integration, a chiplet-based accelerator can be highly specialized for a specific workload, demonstrating extreme efficiency and cost reduction. To fully leverage this potential, it is critical to explore both the architectural design space for individual chiplets and different integration options to assemble these chiplets, which have yet to be fully exploited by existing proposals. This paper proposes Monad, a cost-aware specialization approach for chiplet-based spatial accelerators that explores the tradeoffs between PPA and fabrication costs. To evaluate a specialized system, we introduce a modeling framework considering the non-uniformity in dataflow, pipelining, and communications when executing multiple tensor workloads on different chiplets. We propose to combine the architecture and integration design space by uniformly encoding the design aspects for both spaces and exploring them with a systematic ML-based approach. The experiments demonstrate that Monad can achieve an average of 16% and 30% EDP reduction compared with the state-of-the-art chiplet-based accelerators, Simba and NN-Baton, respectively.Comment: To be published in ICCAD 202

    TAG : Type Auxiliary Guiding for Code Comment Generation

    Full text link
    Existing leading code comment generation approaches with the structure-to-sequence framework ignores the type information of the interpretation of the code, e.g., operator, string, etc. However, introducing the type information into the existing framework is non-trivial due to the hierarchical dependence among the type information. In order to address the issues above, we propose a Type Auxiliary Guiding encoder-decoder framework for the code comment generation task which considers the source code as an N-ary tree with type information associated with each node. Specifically, our framework is featured with a Type-associated Encoder and a Type-restricted Decoder which enables adaptive summarization of the source code. We further propose a hierarchical reinforcement learning method to resolve the training difficulties of our proposed framework. Extensive evaluations demonstrate the state-of-the-art performance of our framework with both the auto-evaluated metrics and case studies.Comment: ACL 2020, Accepte

    Regulation of Apical NHE3 Trafficking by Ouabain-Induced Activation of Basolateral Na/K-ATPase Receptor Complex

    Get PDF
    The long-term effects of ouabain on transepithelial Na+ transport involve transcriptional downregulation of apical Na+/H+ exchanger isoform 3 (NHE3). The aim of this study was to determine whether ouabain could acutely regulate NHE3 via a posttranscriptional mechanism in LLC-PK1 cells. We observed that the basolateral, but not apical, application of ouabain for 1 h significantly reduced transepithelial Na+ transport. This effect was not due to changes in the integrity of tight junctions or increases in the intracellular Na+ concentration. Ouabain regulated the trafficking of NHE3 and subsequently inhibited its activity, a process independent of intracellular Na+ concentration. Ouabain-induced NHE3 trafficking was abolished by either cholesterol depletion or Src inhibition. Moreover, ouabain increased the intracellular Ca2+concentration. Pretreatment of cells with the intracellular Ca2+ chelator BAPTA-AM blocked ouabain-induced trafficking of NHE3. Also, blockade of Na+-K+-ATPase endocytosis by a phosphatidylinositol 3-kinase inhibitor was equally effective in attenuating ouabain-induced NHE3 trafficking. These data indicate that ouabain acutely stimulates NHE3 trafficking by activating the basolateral Na+-K+-ATPase signaling complex. Taken together with our previous observations, we propose that ouabain can simultaneously regulate basolateral Na+-K+-ATPase and apical NHE3, leading to inhibition of transepithelial Na+ transport. This mechanism may be relevant to proximal tubular Na+ handling during conditions associated with increases in circulating endogenous cardiotonic steroids

    Wireless Deep Video Semantic Transmission

    Full text link
    In this paper, we design a new class of high-efficiency deep joint source-channel coding methods to achieve end-to-end video transmission over wireless channels. The proposed methods exploit nonlinear transform and conditional coding architecture to adaptively extract semantic features across video frames, and transmit semantic feature domain representations over wireless channels via deep joint source-channel coding. Our framework is collected under the name deep video semantic transmission (DVST). In particular, benefiting from the strong temporal prior provided by the feature domain context, the learned nonlinear transform function becomes temporally adaptive, resulting in a richer and more accurate entropy model guiding the transmission of current frame. Accordingly, a novel rate adaptive transmission mechanism is developed to customize deep joint source-channel coding for video sources. It learns to allocate the limited channel bandwidth within and among video frames to maximize the overall transmission performance. The whole DVST design is formulated as an optimization problem whose goal is to minimize the end-to-end transmission rate-distortion performance under perceptual quality metrics or machine vision task performance metrics. Across standard video source test sequences and various communication scenarios, experiments show that our DVST can generally surpass traditional wireless video coded transmission schemes. The proposed DVST framework can well support future semantic communications due to its video content-aware and machine vision task integration abilities.Comment: published in IEEE JSA
    • …
    corecore