176 research outputs found

    Learning Logistic Circuits

    Full text link
    This paper proposes a new classification model called logistic circuits. On MNIST and Fashion datasets, our learning algorithm outperforms neural networks that have an order of magnitude more parameters. Yet, logistic circuits have a distinct origin in symbolic AI, forming a discriminative counterpart to probabilistic-logical circuits such as ACs, SPNs, and PSDDs. We show that parameter learning for logistic circuits is convex optimization, and that a simple local search algorithm can induce strong model structures from data.Comment: Published in the Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI19

    RulE: Neural-Symbolic Knowledge Graph Reasoning with Rule Embedding

    Full text link
    Knowledge graph (KG) reasoning is an important problem for knowledge graphs. It predicts missing links by reasoning on existing facts. Knowledge graph embedding (KGE) is one of the most popular methods to address this problem. It embeds entities and relations into low-dimensional vectors and uses the learned entity/relation embeddings to predict missing facts. However, KGE only uses zeroth-order (propositional) logic to encode existing triplets (e.g., ``Alice is Bob's wife."); it is unable to leverage first-order (predicate) logic to represent generally applicable logical \textbf{rules} (e.g., ``x,y ⁣:x is y’s wifey is x’s husband\forall x,y \colon x ~\text{is}~ y\text{'s wife} \rightarrow y ~\text{is}~ x\text{'s husband}''). On the other hand, traditional rule-based KG reasoning methods usually rely on hard logical rule inference, making it brittle and hardly competitive with KGE. In this paper, we propose RulE, a novel and principled framework to represent and model logical rules and triplets. RulE jointly represents entities, relations and logical rules in a unified embedding space. By learning an embedding for each logical rule, RulE can perform logical rule inference in a soft way and give a confidence score to each grounded rule, similar to how KGE gives each triplet a confidence score. Compared to KGE alone, RulE allows injecting prior logical rule information into the embedding space, which improves the generalization of knowledge graph embedding. Besides, the learned confidence scores of rules improve the logical rule inference process by softly controlling the contribution of each rule, which alleviates the brittleness of logic. We evaluate our method with link prediction tasks. Experimental results on multiple benchmark KGs demonstrate the effectiveness of RulE

    Open-World Multi-Task Control Through Goal-Aware Representation Learning and Adaptive Horizon Prediction

    Full text link
    We study the problem of learning goal-conditioned policies in Minecraft, a popular, widely accessible yet challenging open-ended environment for developing human-level multi-task agents. We first identify two main challenges of learning such policies: 1) the indistinguishability of tasks from the state distribution, due to the vast scene diversity, and 2) the non-stationary nature of environment dynamics caused by partial observability. To tackle the first challenge, we propose Goal-Sensitive Backbone (GSB) for the policy to encourage the emergence of goal-relevant visual state representations. To tackle the second challenge, the policy is further fueled by an adaptive horizon prediction module that helps alleviate the learning uncertainty brought by the non-stationary dynamics. Experiments on 20 Minecraft tasks show that our method significantly outperforms the best baseline so far; in many of them, we double the performance. Our ablation and exploratory studies then explain how our approach beat the counterparts and also unveil the surprising bonus of zero-shot generalization to new scenes (biomes). We hope our agent could help shed some light on learning goal-conditioned, multi-task agents in challenging, open-ended environments like Minecraft.Comment: This paper is accepted by CVPR202

    Efficient Meta Reinforcement Learning for Preference-based Fast Adaptation

    Full text link
    Learning new task-specific skills from a few trials is a fundamental challenge for artificial intelligence. Meta reinforcement learning (meta-RL) tackles this problem by learning transferable policies that support few-shot adaptation to unseen tasks. Despite recent advances in meta-RL, most existing methods require the access to the environmental reward function of new tasks to infer the task objective, which is not realistic in many practical applications. To bridge this gap, we study the problem of few-shot adaptation in the context of human-in-the-loop reinforcement learning. We develop a meta-RL algorithm that enables fast policy adaptation with preference-based feedback. The agent can adapt to new tasks by querying human's preference between behavior trajectories instead of using per-step numeric rewards. By extending techniques from information theory, our approach can design query sequences to maximize the information gain from human interactions while tolerating the inherent error of non-expert human oracle. In experiments, we extensively evaluate our method, Adaptation with Noisy OracLE (ANOLE), on a variety of meta-RL benchmark tasks and demonstrate substantial improvement over baseline algorithms in terms of both feedback efficiency and error tolerance.Comment: Thirty-sixth Conference on Neural Information Processing Systems (NeurIPS 2022
    corecore