20 research outputs found

    The state of adolescent sexual and reproductive health

    Get PDF
    In the 25 years since the 1994 International Conference on Population and Development, significant progress has been made in adolescent sexual and reproductive health and rights (ASRHR). Trend analysis of key ASRHR indicators at global, national, and subnational levels indicates that adolescent girls today are more likely to marry later, delay their first sexual experience, and delay their first childbirth, compared with 25 years ago; they are also more likely to use contraceptives. Despite overall progress, however, unequal progress in many ASRHR outcomes is evident both within and between countries, and in some locations, the state of adolescents' lives has worsened. Population growth in countries with some of the worst shortfalls in ASRHR mean that declining rates, of child marriage, for example, coexist with higher absolute numbers of girls affected, compared with 25 years ago. Emerging trends that warrant closer attention include increasing rates of ovarian and breast cancer among adolescent girls and sharp increases in the proportion of adolescents who are overweight or obese, which has long-term health implications. (C) 2019 Published by Elsevier Inc. on behalf of Society for Adolescent Health and Medicine

    Countdown to 2030 : tracking progress towards universal coverage for reproductive, maternal, newborn, and child health

    Get PDF
    Building upon the successes of Countdown to 2015, Countdown to 2030 aims to support the monitoring and measurement of women's, children's, and adolescents' health in the 81 countries that account for 95% of maternal and 90% of all child deaths worldwide. To achieve the Sustainable Development Goals by 2030, the rate of decline in prevalence of maternal and child mortality, stillbirths, and stunting among children younger than 5 years of age needs to accelerate considerably compared with progress since 2000. Such accelerations are only possible with a rapid scale-up of effective interventions to all population groups within countries (particularly in countries with the highest mortality and in those affected by conflict), supported by improvements in underlying socioeconomic conditions, including women's empowerment. Three main conclusions emerge from our analysis of intervention coverage, equity, and drivers of reproductive, maternal, newborn, and child health (RMNCH) in the 81 Countdown countries. First, even though strong progress was made in the coverage of many essential RMNCH interventions during the past decade, many countries are still a long way from universal coverage for most essential interventions. Furthermore, a growing body of evidence suggests that available services in many countries are of poor quality, limiting the potential effect on RMNCH outcomes. Second, within-country inequalities in intervention coverage are reducing in most countries (and are now almost non-existent in a few countries), but the pace is too slow. Third, health-sector (eg, weak country health systems) and non-health-sector drivers (eg, conflict settings) are major impediments to delivering high-quality services to all populations. Although more data for RMNCH interventions are available now, major data gaps still preclude the use of evidence to drive decision making and accountability. Countdown to 2030 is investing in improvements in measurement in several areas, such as quality of care and effective coverage, nutrition programmes, adolescent health, early childhood development, and evidence for conflict settings, and is prioritising its regional networks to enhance local analytic capacity and evidence for RMNCH

    Physiological and Transcriptional Responses of Industrial Rapeseed (Brassica napus) Seedlings to Drought and Salinity Stress

    No full text
    Abiotic stress greatly inhibits crop growth and reduces yields. However, little is known about the transcriptomic changes that occur in the industrial oilseed crop, rapeseed (Brassica napus), in response to abiotic stress. In this study, we examined the physiological and transcriptional responses of rapeseed to drought (simulated by treatment with 15% (w/v) polyethylene glycol (PEG) 6000) and salinity (150 mM NaCl) stress. Proline contents in young seedlings greatly increased under both conditions after 3 h of treatment, whereas the levels of antioxidant enzymes remained unchanged. We assembled transcripts from the leaves and roots of rapeseed and performed BLASTN searches against the rapeseed genome database for the first time. Gene ontology analysis indicated that DEGs involved in catalytic activity, metabolic process, and response to stimulus were highly enriched. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that differentially expressed genes (DEGs) from the categories metabolic pathways and biosynthesis of secondary metabolites were highly enriched. We determined that myeloblastosis (MYB), NAM/ATAF1-2/CUC2 (NAC), and APETALA2/ethylene-responsive element binding proteins (AP2-EREBP) transcription factors function as major switches that control downstream gene expression and that proline plays a role under short-term abiotic stress treatment due to increased expression of synthesis and decreased expression of degradation. Furthermore, many common genes function in the response to both types of stress in this rapeseed

    Exogenous IAA application affects the specific characteristics of fluoranthene distribution in Arabidopsis

    No full text
    Indole-3-acetic acid (IAA) is a crucial growth regulator involved in the accumulation of polycyclic aromatic hydrocarbons (PAHs). However, the precise physiological and molecular mechanisms underlying IAA-mediated plant growth and PAH accumulation are not yet fully understood. In this study, two distinct IAA-sensitive genotypes of Arabidopsis thaliana (wild type and Axr5 mutant) were chosen to investigate the mechanisms of fluoranthene (Flu) uptake and accumulation in plant tissues (roots and leaves) through physiological and molecular analyses. The results revealed that the Flu concentration in Axr5 leaves was significantly higher than that in wild-type (WT) leaves. In roots, the Flu content decreased significantly with increasing IAA treatment, while no significant changes were observed with lower IAA treatment. Principal component analysis demonstrated that Flu accumulation in Arabidopsis roots was associated with IAA concentrations, whereas Flu accumulation in leaves was dependent on the genotype. Moreover, Flu accumulation showed a positive correlation with the activity of glutathione S-transferase (GST) and root length and a positive correlation with catalase (CAT) and peroxidase (POD) activity in the leaves. Transcriptome analysis confirmed that the expression of the ethylene-related gene ATERF6 and GST-related genes ATGSTF14 and ATGSTU27 in roots, as well as the POD-related genes AtPRX9 and AtPRX25 and CAT-related gene AtCAT3 in leaves, played a role in Flu accumulation. Furthermore, WRKY transcription factors (TFs) in roots and NAC TFs in leaves were identified as important regulators of Flu accumulation. Understanding the mechanisms of Flu uptake and accumulation in A. thaliana provides valuable insights for regulating PAH accumulation in plants

    The Spouses of Stroke Patients Have a Similar Oral Microbiome to Their Partners with an Elevated Risk of Stroke

    No full text
    Spousal members who share no genetic relatedness show similar oral microbiomes. Whether a shared microbiome increases the risk of cerebrovascular disease is challenging to investigate. The aim of this study was to compare the oral microbiota composition of poststroke patients, their partners, and controls and to compare the risk of stroke between partners of poststroke patients and controls. Forty-seven pairs of spouses and 34 control subjects were recruited for the study. Alcohol use, smoking, metabolic disease history, clinical test results, and oral health were documented. Oral microbiome samples were measured by 16S rRNA gene sequencing. The risk of stroke was measured by risk factor assessment (RFA) and the Framingham Stroke Profile (FSP). Poststroke patients and their partners exhibited higher alpha diversity than controls. Principal-coordinate analysis (PCoA) showed that poststroke patients share a more similar microbiota composition with their partners than controls. The differentially abundant microbial taxa among the 3 groups were identified by linear discriminant analysis effect size (LEfSe) analysis. The risk factor assessment indicated that partners of poststroke patients had a higher risk of stroke than controls. Spearman correlation analysis showed that Prevotellaceae was negatively associated with RFA. Lactobacillales was negatively associated with FSP, while Campilobacterota and [Eubacterium]_nodatum_group were positively associated with FSP. These results suggest that stroke risk may be transmissible between spouses through the oral microbiome, in which several bacteria might be involved in the pathogenesis of stroke

    Bipolar Conduction and Giant Positive Magnetoresistance in Doped Metallic Titanium Oxide Heterostructures

    No full text
    Empowering conventional materials with unexpected magnetoelectric properties is appealing to the multi-functionalization of existing devices and the exploration of future electronics. Recently, owing to its unique effect in modulating a matter's properties, ultra-small dopants, for example, H, D, and Li, attract enormous attention in creating emergent functionalities, such as superconductivity, and metal–insulator transition. Here, an observation of bipolar conduction accompanied by a giant positive magnetoresistance in D-doped metallic Ti oxide (TiOxDy) films is reported. To overcome the challenges in intercalating the D into a crystalline oxide, a series of TiOxDy is formed by sequentially doping Ti with D and surface/interface oxidation. Intriguingly, while the electron mobility of the TiOxDy increases by an order of magnitude larger after doping, the emergent holes also exhibit high mobility. Moreover, the bipolar conduction induces a giant magnetoresistance up to 900% at 6 T, which is ≈6 times higher than its conventional phase. This study paves a way to empower conventional materials in existing electronics and induce novel electronic phases.</p
    corecore