121 research outputs found

    Inhibition of miR-29 by TGF-beta-Smad3 Signaling through Dual Mechanisms Promotes Transdifferentiation of Mouse Myoblasts into Myofibroblasts

    Get PDF
    MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression in post-transcriptional fashion, and emerging studies support their importance in regulating many biological processes, including myogenic differentiation and muscle development. miR-29 is a promoting factor during myogenesis but its full spectrum of impact on muscle cells has yet to be explored. Here we describe an analysis of miR-29 affected transcriptome in C2C12 muscle cells using a high throughput RNA-sequencing platform. The results reveal that miR-29 not only functions to promote myogenic differentiation but also suppresses the transdifferentiation of myoblasts into myofibroblasts. miR-29 inhibits the fibrogenic differentiation through down-regulating both extracellular matrix genes and cell adhesion genes. We further demonstrate that miR-29 is under negative regulation by TGF-beta (TGF-β)–Smad3 signaling via dual mechanisms of both inhibiting MyoD binding and enhancing Yin Yang 1 (YY1)-recruited Polycomb association. Together, these results identify miR-29 as a pleiotropic molecule in both myogenic and fibrogenic differentiation of muscle cells

    Spatially restricted drivers and transitional cell populations cooperate with the microenvironment in untreated and chemo-resistant pancreatic cancer

    Get PDF
    Pancreatic ductal adenocarcinoma is a lethal disease with limited treatment options and poor survival. We studied 83 spatial samples from 31 patients (11 treatment-naïve and 20 treated) using single-cell/nucleus RNA sequencing, bulk-proteogenomics, spatial transcriptomics and cellular imaging. Subpopulations of tumor cells exhibited signatures of proliferation, KRAS signaling, cell stress and epithelial-to-mesenchymal transition. Mapping mutations and copy number events distinguished tumor populations from normal and transitional cells, including acinar-to-ductal metaplasia and pancreatic intraepithelial neoplasia. Pathology-assisted deconvolution of spatial transcriptomic data identified tumor and transitional subpopulations with distinct histological features. We showed coordinated expression of TIGIT in exhausted and regulatory T cells and Nectin in tumor cells. Chemo-resistant samples contain a threefold enrichment of inflammatory cancer-associated fibroblasts that upregulate metallothioneins. Our study reveals a deeper understanding of the intricate substructure of pancreatic ductal adenocarcinoma tumors that could help improve therapy for patients with this disease

    Effect of live poultry market interventions on influenza A(H7N9) virus, Guangdong, China

    Get PDF
    Since March 2013, three waves of human infection with avian influenza A(H7N9) virus have been detected in China. To investigate virus transmission within and across epidemic waves, we used surveillance data and whole-genome analysis of viruses sampled in Guangdong during 2013–2015. We observed a geographic shift of human A(H7N9) infections from the second to the third waves. Live poultry market interventions were undertaken in epicenter cities; however, spatial phylogenetic analysis indicated that the third-wave outbreaks in central Guangdong most likely resulted from local virus persistence rather than introduction from elsewhere. Although the number of clinical cases in humans declined by 35% from the second to the third waves, the genetic diversity of third-wave viruses in Guangdong increased. Our results highlight the epidemic risk to a region reporting comparatively few A(H7N9) cases. Moreover, our results suggest that live-poultry market interventions cannot completely halt A(H7N9) virus persistence and dissemination

    Gpr124 is essential for blood-brain barrier integrity in central nervous system disease

    Get PDF
    Although blood-brain barrier (BBB) compromise is central to the etiology of diverse central nervous system (CNS) disorders, endothelial receptor proteins that control BBB function are poorly defined. The endothelial G-protein-coupled receptor (GPCR) Gpr124 has been reported to be required for normal forebrain angiogenesis and BBB function in mouse embryos, but the role of this receptor in adult animals is unknown. Here Gpr124 conditional knockout (CKO) in the endothelia of adult mice did not affect homeostatic BBB integrity, but resulted in BBB disruption and microvascular hemorrhage in mouse models of both ischemic stroke and glioblastoma, accompanied by reduced cerebrovascular canonical Wnt-β-catenin signaling. Constitutive activation of Wnt-β-catenin signaling fully corrected the BBB disruption and hemorrhage defects of Gpr124-CKO mice, with rescue of the endothelial gene tight junction, pericyte coverage and extracellular-matrix deficits. We thus identify Gpr124 as an endothelial GPCR specifically required for endothelial Wnt signaling and BBB integrity under pathological conditions in adult mice. This finding implicates Gpr124 as a potential therapeutic target for human CNS disorders characterized by BBB disruption

    Repairing imperfect video enhancement algorithms using classification-based trained filters

    No full text
    There are numerous video processing algorithms and modules available. When the algorithms are not optimally tuned, undesired results may happen in the processed video signals, e.g. blurring, overshoots/downshoots, loss of details and aliasing. When the video processing modules are fixed, e.g. when the modules are implemented in hardware/chips, it is highly desirable to repair those unpleasant effects caused by certain imperfect algorithms. In this paper, we propose a solution based on classification and least squares trained filters to repair/patch low-quality video processing modules at the back end of a video chain. Extensive experiments show that the repairing method can significantly improve the video quality without modifying the original processing modules
    • …
    corecore