443 research outputs found

    Convergence Rates with Inexact Non-expansive Operators

    Full text link
    In this paper, we present a convergence rate analysis for the inexact Krasnosel'skii-Mann iteration built from nonexpansive operators. Our results include two main parts: we first establish global pointwise and ergodic iteration-complexity bounds, and then, under a metric subregularity assumption, we establish local linear convergence for the distance of the iterates to the set of fixed points. The obtained iteration-complexity result can be applied to analyze the convergence rate of various monotone operator splitting methods in the literature, including the Forward-Backward, the Generalized Forward-Backward, Douglas-Rachford, alternating direction method of multipliers (ADMM) and Primal-Dual splitting methods. For these methods, we also develop easily verifiable termination criteria for finding an approximate solution, which can be seen as a generalization of the termination criterion for the classical gradient descent method. We finally develop a parallel analysis for the non-stationary Krasnosel'skii-Mann iteration. The usefulness of our results is illustrated by applying them to a large class of structured monotone inclusion and convex optimization problems. Experiments on some large scale inverse problems in signal and image processing problems are shown.Comment: This is an extended version of the work presented in http://arxiv.org/abs/1310.6636, and is accepted by the Mathematical Programmin

    Activity Identification and Local Linear Convergence of Forward--Backward-type methods

    Full text link
    In this paper, we consider a class of Forward--Backward (FB) splitting methods that includes several variants (e.g. inertial schemes, FISTA) for minimizing the sum of two proper convex and lower semi-continuous functions, one of which has a Lipschitz continuous gradient, and the other is partly smooth relatively to a smooth active manifold M\mathcal{M}. We propose a unified framework, under which we show that, this class of FB-type algorithms (i) correctly identifies the active manifolds in a finite number of iterations (finite activity identification), and (ii) then enters a local linear convergence regime, which we characterize precisely in terms of the structure of the underlying active manifolds. For simpler problems involving polyhedral functions, we show finite termination. We also establish and explain why FISTA (with convergent sequences) locally oscillates and can be slower than FB. These results may have numerous applications including in signal/image processing, sparse recovery and machine learning. Indeed, the obtained results explain the typical behaviour that has been observed numerically for many problems in these fields such as the Lasso, the group Lasso, the fused Lasso and the nuclear norm regularization to name only a few.Comment: Full length version of the previous short on

    A Multi-step Inertial Forward--Backward Splitting Method for Non-convex Optimization

    Full text link
    In this paper, we propose a multi-step inertial Forward--Backward splitting algorithm for minimizing the sum of two non-necessarily convex functions, one of which is proper lower semi-continuous while the other is differentiable with a Lipschitz continuous gradient. We first prove global convergence of the scheme with the help of the Kurdyka-{\L}ojasiewicz property. Then, when the non-smooth part is also partly smooth relative to a smooth submanifold, we establish finite identification of the latter and provide sharp local linear convergence analysis. The proposed method is illustrated on a few problems arising from statistics and machine learning.Comment: This paper is in company with our recent work on Forward--Backward-type splitting methods http://arxiv.org/abs/1503.0370

    Local Linear Convergence Analysis of Primal-Dual Splitting Methods

    Full text link
    In this paper, we study the local linear convergence properties of a versatile class of Primal-Dual splitting methods for minimizing composite non-smooth convex optimization problems. Under the assumption that the non-smooth components of the problem are partly smooth relative to smooth manifolds, we present a unified local convergence analysis framework for these methods. More precisely, in our framework we first show that (i) the sequences generated by Primal-Dual splitting methods identify a pair of primal and dual smooth manifolds in a finite number of iterations, and then (ii) enter a local linear convergence regime, which is characterized based on the structure of the underlying active smooth manifolds. We also show how our results for Primal-Dual splitting can be specialized to cover existing ones on Forward-Backward splitting and Douglas-Rachford splitting/ADMM (alternating direction methods of multipliers). Moreover, based on these obtained local convergence analysis result, several practical acceleration techniques are discussed. To exemplify the usefulness of the obtained result, we consider several concrete numerical experiments arising from fields including signal/image processing, inverse problems and machine learning, etc. The demonstration not only verifies the local linear convergence behaviour of Primal-Dual splitting methods, but also the insights on how to accelerate them in practice

    Iteration-Complexity of a Generalized Forward Backward Splitting Algorithm

    Full text link
    In this paper, we analyze the iteration-complexity of Generalized Forward--Backward (GFB) splitting algorithm, as proposed in \cite{gfb2011}, for minimizing a large class of composite objectives f+∑i=1nhif + \sum_{i=1}^n h_i on a Hilbert space, where ff has a Lipschitz-continuous gradient and the hih_i's are simple (\ie their proximity operators are easy to compute). We derive iteration-complexity bounds (pointwise and ergodic) for the inexact version of GFB to obtain an approximate solution based on an easily verifiable termination criterion. Along the way, we prove complexity bounds for relaxed and inexact fixed point iterations built from composition of nonexpansive averaged operators. These results apply more generally to GFB when used to find a zero of a sum of n>0n > 0 maximal monotone operators and a co-coercive operator on a Hilbert space. The theoretical findings are exemplified with experiments on video processing.Comment: 5 pages, 2 figure
    • 

    corecore