443 research outputs found
Convergence Rates with Inexact Non-expansive Operators
In this paper, we present a convergence rate analysis for the inexact
Krasnosel'skii-Mann iteration built from nonexpansive operators. Our results
include two main parts: we first establish global pointwise and ergodic
iteration-complexity bounds, and then, under a metric subregularity assumption,
we establish local linear convergence for the distance of the iterates to the
set of fixed points. The obtained iteration-complexity result can be applied to
analyze the convergence rate of various monotone operator splitting methods in
the literature, including the Forward-Backward, the Generalized
Forward-Backward, Douglas-Rachford, alternating direction method of multipliers
(ADMM) and Primal-Dual splitting methods. For these methods, we also develop
easily verifiable termination criteria for finding an approximate solution,
which can be seen as a generalization of the termination criterion for the
classical gradient descent method. We finally develop a parallel analysis for
the non-stationary Krasnosel'skii-Mann iteration. The usefulness of our results
is illustrated by applying them to a large class of structured monotone
inclusion and convex optimization problems. Experiments on some large scale
inverse problems in signal and image processing problems are shown.Comment: This is an extended version of the work presented in
http://arxiv.org/abs/1310.6636, and is accepted by the Mathematical
Programmin
Activity Identification and Local Linear Convergence of Forward--Backward-type methods
In this paper, we consider a class of Forward--Backward (FB) splitting
methods that includes several variants (e.g. inertial schemes, FISTA) for
minimizing the sum of two proper convex and lower semi-continuous functions,
one of which has a Lipschitz continuous gradient, and the other is partly
smooth relatively to a smooth active manifold . We propose a
unified framework, under which we show that, this class of FB-type algorithms
(i) correctly identifies the active manifolds in a finite number of iterations
(finite activity identification), and (ii) then enters a local linear
convergence regime, which we characterize precisely in terms of the structure
of the underlying active manifolds. For simpler problems involving polyhedral
functions, we show finite termination. We also establish and explain why FISTA
(with convergent sequences) locally oscillates and can be slower than FB. These
results may have numerous applications including in signal/image processing,
sparse recovery and machine learning. Indeed, the obtained results explain the
typical behaviour that has been observed numerically for many problems in these
fields such as the Lasso, the group Lasso, the fused Lasso and the nuclear norm
regularization to name only a few.Comment: Full length version of the previous short on
A Multi-step Inertial Forward--Backward Splitting Method for Non-convex Optimization
In this paper, we propose a multi-step inertial Forward--Backward splitting
algorithm for minimizing the sum of two non-necessarily convex functions, one
of which is proper lower semi-continuous while the other is differentiable with
a Lipschitz continuous gradient. We first prove global convergence of the
scheme with the help of the Kurdyka-{\L}ojasiewicz property. Then, when the
non-smooth part is also partly smooth relative to a smooth submanifold, we
establish finite identification of the latter and provide sharp local linear
convergence analysis. The proposed method is illustrated on a few problems
arising from statistics and machine learning.Comment: This paper is in company with our recent work on
Forward--Backward-type splitting methods http://arxiv.org/abs/1503.0370
Local Linear Convergence Analysis of Primal-Dual Splitting Methods
In this paper, we study the local linear convergence properties of a
versatile class of Primal-Dual splitting methods for minimizing composite
non-smooth convex optimization problems. Under the assumption that the
non-smooth components of the problem are partly smooth relative to smooth
manifolds, we present a unified local convergence analysis framework for these
methods. More precisely, in our framework we first show that (i) the sequences
generated by Primal-Dual splitting methods identify a pair of primal and dual
smooth manifolds in a finite number of iterations, and then (ii) enter a local
linear convergence regime, which is characterized based on the structure of the
underlying active smooth manifolds. We also show how our results for
Primal-Dual splitting can be specialized to cover existing ones on
Forward-Backward splitting and Douglas-Rachford splitting/ADMM (alternating
direction methods of multipliers). Moreover, based on these obtained local
convergence analysis result, several practical acceleration techniques are
discussed. To exemplify the usefulness of the obtained result, we consider
several concrete numerical experiments arising from fields including
signal/image processing, inverse problems and machine learning, etc. The
demonstration not only verifies the local linear convergence behaviour of
Primal-Dual splitting methods, but also the insights on how to accelerate them
in practice
Iteration-Complexity of a Generalized Forward Backward Splitting Algorithm
In this paper, we analyze the iteration-complexity of Generalized
Forward--Backward (GFB) splitting algorithm, as proposed in \cite{gfb2011}, for
minimizing a large class of composite objectives on a
Hilbert space, where has a Lipschitz-continuous gradient and the 's
are simple (\ie their proximity operators are easy to compute). We derive
iteration-complexity bounds (pointwise and ergodic) for the inexact version of
GFB to obtain an approximate solution based on an easily verifiable termination
criterion. Along the way, we prove complexity bounds for relaxed and inexact
fixed point iterations built from composition of nonexpansive averaged
operators. These results apply more generally to GFB when used to find a zero
of a sum of maximal monotone operators and a co-coercive operator on a
Hilbert space. The theoretical findings are exemplified with experiments on
video processing.Comment: 5 pages, 2 figure
- âŠ