35 research outputs found

    Fabrication of Three-Dimensionally Ordered Nanostructured Materials Through Colloidal Crystal Templating

    Get PDF
    The void spaces in colloidal crystals (opals, three-dimensional (3D) close-packed arrays of silica nanospheres) and their replicas are used as templates in the fabrication of new nanostructured materials. 3D ordered nanomeshes and nanosphere arrays are readily obtained by chemical and/or electrochemical methods. Using silica opal templates, metals or polymers are infiltrated into the interstices between the silica nanospheres. Subsequent dissolution of the opals with HF solution produces open 3D mesh structures. Metal (such as Ni, Co, Fe, Pd, Au, Ag, and Cu) and conductive polymer (such as polyaniline) meshes are obtained by electrochemical deposition approach, while the nonconductive polymer (such as poly(methyl methacrylate) (PMMA)) meshes are synthesized by chemical polymerization method. Some new types of meshes are fabricated by the conversion of metal meshes and polymer meshes. NiO meshes are formed by oxidizing Ni meshes in the air. The NiO meshes exhibit higher volume occupation fraction than Ni meshes and the nanocrystalline sizes of NiO particles can be adjusted by the oxidation temperature. Due to the mechanical flexibility of polymer meshes, the compression of PMMA meshes produces deformed PMMA meshes which contain oblate pores. These meshes can be again served as templates to prepare new types of colloidal crystals (nanosphere arrays) and specific nanocomposites. By the use of poorly conductive NiO mesh or PMMA mesh arrays as templates, 3D periodic metal nanosphere arrays, such as those of Ni, Co, Au and Pd, are readily fabricated by the electrodeposition method. Metal/NiO or Metal/PMMA composites can also be obtained if the templates are left intact. The magnetic behavior of metal (such as Ni and Co) meshes and sphere arrays has been investigated. These nanoscale arrays show significantly enhanced coercivities compared with bulk metals, due to the size effect of the nanometer dimensions of the components in meshes and sphere arrays. Angle-dependent magnetic properties of Ni and Co sphere array membranes exhibit out-of-plane anisotropy

    Fabrication of Three-Dimensionally Ordered Nanostructured Materials Through Colloidal Crystal Templating

    Get PDF
    The void spaces in colloidal crystals (opals, three-dimensional (3D) close-packed arrays of silica nanospheres) and their replicas are used as templates in the fabrication of new nanostructured materials. 3D ordered nanomeshes and nanosphere arrays are readily obtained by chemical and/or electrochemical methods. Using silica opal templates, metals or polymers are infiltrated into the interstices between the silica nanospheres. Subsequent dissolution of the opals with HF solution produces open 3D mesh structures. Metal (such as Ni, Co, Fe, Pd, Au, Ag, and Cu) and conductive polymer (such as polyaniline) meshes are obtained by electrochemical deposition approach, while the nonconductive polymer (such as poly(methyl methacrylate) (PMMA)) meshes are synthesized by chemical polymerization method. Some new types of meshes are fabricated by the conversion of metal meshes and polymer meshes. NiO meshes are formed by oxidizing Ni meshes in the air. The NiO meshes exhibit higher volume occupation fraction than Ni meshes and the nanocrystalline sizes of NiO particles can be adjusted by the oxidation temperature. Due to the mechanical flexibility of polymer meshes, the compression of PMMA meshes produces deformed PMMA meshes which contain oblate pores. These meshes can be again served as templates to prepare new types of colloidal crystals (nanosphere arrays) and specific nanocomposites. By the use of poorly conductive NiO mesh or PMMA mesh arrays as templates, 3D periodic metal nanosphere arrays, such as those of Ni, Co, Au and Pd, are readily fabricated by the electrodeposition method. Metal/NiO or Metal/PMMA composites can also be obtained if the templates are left intact. The magnetic behavior of metal (such as Ni and Co) meshes and sphere arrays has been investigated. These nanoscale arrays show significantly enhanced coercivities compared with bulk metals, due to the size effect of the nanometer dimensions of the components in meshes and sphere arrays. Angle-dependent magnetic properties of Ni and Co sphere array membranes exhibit out-of-plane anisotropy

    Effects of magnesium supplementation on improving hyperglycemia, hypercholesterolemia, and hypertension in type 2 diabetes: A pooled analysis of 24 randomized controlled trials

    Get PDF
    BackgroundPrevious studies have demonstrated that diabetes is often accompanied with lower magnesium status. However, practical details regarding the influences of magnesium intervention on hyperglycemia, hypercholesterolemia, and hypertension in type 2 diabetes (T2D) need to be further investigated.MethodsWeb of Science, ScienceDirect, and PubMed were searched for relevant literatures published through April 30, 2022, and high-quality data were pooled to evaluate the effects of magnesium supplementation on glycemic, circulating lipids, and blood pressure control in T2D, and to explore the associated practical details.ResultsPooled analyses of 24 randomized controlled trials with 1,325 T2D individuals revealed that subjects who received magnesium supplementation had statistically significant reductions in fasting plasma glucose, glycated hemoglobin, systolic blood pressure and diastolic blood pressure, with WMD values of –0.20 mM (95% CI: –0.30, –0.09), –0.22% (95% CI: –0.41, –0.03), –7.69 mmHg (95% CI: –11.71, –3.66) and –2.71 mmHg (95% CI: –4.02, –1.40), respectively. Detailed subgroup analyses demonstrated that health status of participants including age, body mass index, country, duration of disease, baseline magnesium level and baseline glycemic control condition as well as magnesium formulation, dosage and duration of intervention influenced the effects of magnesium addition. Dose-effect analysis showed that 279 mg/d for 116 d, 429 mg/d for 88 d and 300 mg/d for 120 d are the average optimal dosages and durations for improving glycemic, circulating lipids, and blood pressure controls, respectively.ConclusionOur findings provide clinically relevant information on the adjuvant therapy of magnesium for improving hyperglycemia, hypercholesterolemia, and hypertension in T2D

    Effect of external beam radiation therapy versus transcatheter arterial chemoembolization for non-diffuse hepatocellular carcinoma (≥ 5 cm): a multicenter experience over a ten-year period

    Get PDF
    BackgroundThe optimal local treatment for HCC with tumor diameter ≥ 5 cm is not well established. This research evaluated the effectiveness of external beam radiation therapy (EBRT) versus transcatheter arterial chemoembolization (TACE) for HCC with tumor diameter ≥ 5 cm.MethodsA total of 1210 HCC patients were enrolled in this study, including 302 and 908 patients that received EBRT and TACE, respectively. Propensity score matching (PSM) was used to identify patient pairs with similar baseline characteristics. Overall survival (OS) was the primary study endpoint.ResultsWe identified 428 patients using 1:1 PSM for survival comparison. Compared with the TACE group, the EBRT group had a significantly longer median OS (mOS) before (14.9 vs. 12.3 months, p = 0.0085) and after (16.8 vs. 11.4 months, p = 0.0026) matching. In the subgroup analysis, compared with the TACE group, the EBRT group had a significantly longer mOS for HCC with tumor diameters of 5-7 cm (34.1 vs. 14.3 months, p = 0.04) and 7-10 cm (34.4 vs. 10 months, p = 0.00065), whereas for HCC with tumor diameters ≥ 10 cm, no significant difference in mOS was observed (11.2 vs. 11.2 months, p = 0.83). In addition, the multivariable Cox analysis showed that Child-A, alkaline phosphatase < 125 U/L, and EBRT were independent prognostic indicators for longer survival.ConclusionEBRT is more effective than TACE as the primary local treatment for HCC with tumor diameter ≥ 5 cm, especially for HCC with tumor diameter of 5-10 cm

    Comparison of Diagnostic Values of Maternal Arginine Concentration for Different Pregnancy Complications: A Systematic Review and Meta-Analysis

    No full text
    Abnormal arginine metabolism contributes to the development of intrauterine growth restriction (IUGR), preeclampsia (PE), and gestational diabetes mellitus (GDM), which increase the health burden of mothers and induce adverse birth outcomes. However, associations between maternal arginine concentration and different pregnancy complications have not been systematically compared. The PubMed, ScienceDirect, and Web of Science databases were searched for peer-reviewed publications to evaluate the diagnostic value of plasma arginine concentration in complicated pregnancies. Standardized mean difference (SMD) of the arginine concentration was pooled by a random effects model. The results show that increased maternal arginine concentrations were observed in IUGR (SMD: 0.48; 95% CI: 0.20, 0.76; I2 = 47.0%) and GDM (SMD: 0.46; 95% CI: 0.11, 0.81; I2 = 82.3%) cases but not in PE patients (SMD: 0.21; 95% CI: −0.04, 0.47; I2 = 80.3%) compared with the normal cohorts. Subgroup analyses indicated that the non-fasting circulating arginine concentration in third trimester was increased significantly in GDM and severe IUGR pregnancies, but the change mode was dependent on ethnicity. Additionally, only severe PE persons were accompanied by higher plasma arginine concentrations. These findings suggest that maternal arginine concentration is an important reference for assessing the development of pregnancy complications

    Comparison of Diagnostic Values of Maternal Arginine Concentration for Different Pregnancy Complications: A Systematic Review and Meta-Analysis

    No full text
    Abnormal arginine metabolism contributes to the development of intrauterine growth restriction (IUGR), preeclampsia (PE), and gestational diabetes mellitus (GDM), which increase the health burden of mothers and induce adverse birth outcomes. However, associations between maternal arginine concentration and different pregnancy complications have not been systematically compared. The PubMed, ScienceDirect, and Web of Science databases were searched for peer-reviewed publications to evaluate the diagnostic value of plasma arginine concentration in complicated pregnancies. Standardized mean difference (SMD) of the arginine concentration was pooled by a random effects model. The results show that increased maternal arginine concentrations were observed in IUGR (SMD: 0.48; 95% CI: 0.20, 0.76; I2 = 47.0%) and GDM (SMD: 0.46; 95% CI: 0.11, 0.81; I2 = 82.3%) cases but not in PE patients (SMD: 0.21; 95% CI: −0.04, 0.47; I2 = 80.3%) compared with the normal cohorts. Subgroup analyses indicated that the non-fasting circulating arginine concentration in third trimester was increased significantly in GDM and severe IUGR pregnancies, but the change mode was dependent on ethnicity. Additionally, only severe PE persons were accompanied by higher plasma arginine concentrations. These findings suggest that maternal arginine concentration is an important reference for assessing the development of pregnancy complications

    Regulation of Milk Protein Synthesis by Free and Peptide-Bound Amino Acids in Dairy Cows

    No full text
    Milk protein (MP) synthesis in the mammary gland of dairy cows is a complex biological process. As the substrates for protein synthesis, amino acids (AAs) are the most important nutrients for milk synthesis. Free AAs (FAAs) are the main precursors of MP synthesis, and their supplies are supplemented by peptide-bound AAs (PBAAs) in the blood. Utilization of AAs in the mammary gland of dairy cows has attracted the great interest of researchers because of the goal of increasing MP yield. Supplying sufficient and balanced AAs is critical to improve MP concentration and yield in dairy cows. Great progress has been made in understanding limiting AAs and their requirements for MP synthesis in dairy cows. This review focuses on the effects of FAA and PBAA supply on MP synthesis and their underlying mechanisms. Advances in our knowledge in the field can help us to develop more accurate models to predict dietary protein requirements for dairy cows MP synthesis, which will ultimately improve the nitrogen utilization efficiency and lactation performance of dairy cows

    The Effects of Prolonged Basic Amino Acid Exposures on Mitochondrial Enzyme Gene Expressions, Metabolic Profiling and Insulin Secretions and Syntheses in Rat INS-1 β-Cells

    No full text
    In order to investigate the chronic effects of basic amino acids (BAA) on β-cell metabolism and insulin secretion, INS-1 β-cells were randomly assigned to cultures in standard medium (Con), standard medium plus 10 mM L-Arginine (Arg), standard medium plus 10 mM L-Histidine (His) or standard medium plus 10 mM L-Lysine (Lys) for 24 h. Results showed that insulin secretion was decreased by the Arg treatment but was increased by the His treatment relative to the Con group (p p p Cs, mt-Atp6, mt-Nd4l and Ogdh, and caused a greater change in the metabolites profiling (p p < 0.05). Together, different BAAs exerted dissimilar effects on β-cell metabolism and insulin outputs
    corecore