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Background: Previous studies have demonstrated that diabetes is often

accompanied with lower magnesium status. However, practical details

regarding the influences of magnesium intervention on hyperglycemia,

hypercholesterolemia, and hypertension in type 2 diabetes (T2D) need to be

further investigated.

Methods: Web of Science, ScienceDirect, and PubMed were searched for

relevant literatures published through April 30, 2022, and high-quality data

were pooled to evaluate the effects of magnesium supplementation on

glycemic, circulating lipids, and blood pressure control in T2D, and to explore

the associated practical details.

Results: Pooled analyses of 24 randomized controlled trials with 1,325 T2D

individuals revealed that subjects who received magnesium supplementation

had statistically significant reductions in fasting plasma glucose, glycated

hemoglobin, systolic blood pressure and diastolic blood pressure, with WMD

values of –0.20 mM (95% CI: –0.30, –0.09), –0.22% (95% CI: –0.41, –0.03),

–7.69 mmHg (95% CI: –11.71, –3.66) and –2.71 mmHg (95% CI: –4.02, –1.40),

respectively. Detailed subgroup analyses demonstrated that health status of

participants including age, body mass index, country, duration of disease,

baseline magnesium level and baseline glycemic control condition as well as

magnesium formulation, dosage and duration of intervention influenced the

effects of magnesium addition. Dose-effect analysis showed that 279 mg/d

for 116 d, 429 mg/d for 88 d and 300 mg/d for 120 d are the average optimal
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dosages and durations for improving glycemic, circulating lipids, and blood

pressure controls, respectively.

Conclusion: Our findings provide clinically relevant information on

the adjuvant therapy of magnesium for improving hyperglycemia,

hypercholesterolemia, and hypertension in T2D.

KEYWORDS

blood pressure, glycemic control, serum lipids, magnesium supplementation, optimal
details, type 2 diabetes

Introduction

The diabetes prevalence is predicted to be 10.9% by 2045
worldwide, which has negative effects on the well-being of
individuals (1). Type 2 diabetes (T2D) is a common metabolic
disorder usually accompanied with β cell impairment, insulin
resistance and hyperglycemia (2), leading to a diminished
glucose control. Previous work established that T2D individuals
have significant positive relations to formations of hypertension
and hypercholesterolemia (3), which are the main risk factors
related to cardiovascular diseases resulting in high mortality
worldwide (4). Therefore, populations with T2D appear
to own common syndromes of increased plasma glucose,
reduced insulin sensitivity, hypertension and dyslipidemia
simultaneously (5), highlighting the importance to find ways to
treat these complications concurrently.

Magnesium plays a key role in many metabolisms as a
cofactor of enzymatic pathways (6). Previous work showed
that hypomagnesemia was reported in about 30% of diabetic
patients (7). Accumulating evidence demonstrated that higher
magnesium intake improved insulin release and sensibility (8,
9), dyslipidemia (10), and dysfunction of endothelial cells (11),
and reduced thrombotic tendency (12) and vascular contractility
(13). Therefore, clinical magnesium supplementation may be a
strategy to improve the outcomes of T2D cases.

Several systematic reviews (14, 15) carried out on
randomized controlled trials (RCT) were performed to
examine the beneficial influences of magnesium intervention
on development of T2D, but the results were less conclusive.
Furthermore, meta-analysis that simultaneous investigated
the influences of magnesium intervention on hyperglycemia,
hypertension and hyperlipidemia in T2D is relatively limited.
Thus, the effects of magnesium addition improving the
parameters related to the complications of T2D, as well as the
associated practical issues, require additional investigation.

We hypothesized that the dosage effects of magnesium
addition on clinical outcomes of T2D depend on the disease
status and mode of intervention. Therefore, in this meta-analytic
study, we collected RCT data of updated studies to investigate

the efficacy of magnesium supplementation on glycemic, plasma
lipids and blood pressure controls in T2D, and to explore
the optimal details associated with this strategy based on
the patient’s health status and mode of intervention through
subgroup and dose-effect analyses.

Methods

Data collection

This study was registered in the International Prospective
Register of Systematic Reviews (PROSPERO) database
under CRD42022324969, and we followed the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) instructions (16). Relevant published studies were
searched in Web of Science, PubMed and ScienceDirect
published through April 30, 2022, with the following keywords:
(“magnesium supplementation” OR “magnesium intervention”
OR “magnesium”) AND (“diabetes” OR “type 2 diabetes”
OR “non-insulin-dependent diabetics”) AND [“glucose” OR
“fasting plasma glucose (FPG) OR “glycemia” OR “glycemic
control” OR “insulin” OR “glycated hemoglobin (HbA1c)” OR
“homeostasis model assessment-insulin resistance (HOMA-
IR)”] AND [“lipids” OR “total cholesterol (TC)” OR “total
triglyceride (TG)” OR “low density lipoprotein cholesterol
(LDL-C)” OR “high density lipoprotein cholesterol (HDL-C)”]
AND [“blood pressure” OR “systolic blood pressure (SBP)” OR
“diastolic blood pressure (DBP)”]. There were no limitations in
the language of studies. Additional publications were further
collected through reviewing the references of selected relevant
publications. The selection process is summarized in Figure 1.

Criteria on included study

Studies met the following criteria were included in this
meta-analysis: (i) being a parallel or cross-over design in RCT,
(ii) exploring the influences of magnesium addition in T2D
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FIGURE 1

Flowchart of the study design.

patients, (iii) reporting data on one or more of the following
items: FPG, insulin, HDL-C, LDL-C, TC and TG concentrations
along with HbA1c, HOMA-IR, SBP and DBP values; (iv)
reporting the information on above items at baseline and at
the end of follow-up. Exclusion criteria were (i) the study was
not a RCT, (ii) the study had no control group, (iii) the study
had a case-control, cross-sectional or cohort design, and (iv) the
study didn’t report information related to baseline or follow-
up parameters; (v) the study was a methodologic report, review,
comment or abstract.

Data extraction

Detailed information was collected from the eligible studies,
containing the first author’s name, study region, sample size,
participant age and body mass index (BMI), duration of
diabetes, dosage and duration of magnesium intervention,
and plasma concentrations of magnesium, glucose, insulin,
HDL-C, LDL-C, TC and TG as well as HbA1c, HOMA-IR,
SBP and DBP values. The units of FBS, insulin and HbA1c
were converted to mM, mU/L and percentage, respectively.
Besides, the HDL-C, LDL-C, TC and TG concentrations were
all collated in mg/dL.

Quality assessment

The methodologic quality of the RCTs were assessed
by Jadad scale (17). Each publication was assigned a score
from 0 (“poor”) to 5 (“good”) according to the criteria:

(i) does the article have a randomized design? (ii) does
the article have a double-blind design? (iii) does the article
report withdrawals and dropouts? (iv) does the article describe
the randomization procedures and they are appropriate? (v)
does the study report appropriate blinding techniques? Each
“yes” or “no” response will get 1 or 0 points, respectively
(Supplementary Table 1).

Quantitative data synthesis

We used Stata version 14 to perform the statistical
analyses. The differences of mean and SD between baseline
and endpoint were calculated according to the formula:
changes of mean = (measure at endpoint) – (measure at
baseline); SD = squareroot [(SDbaseline)2 + (SDendpoint)2 –
(2R × SDbaseline × SDendpoint)], assuming a correlation
coefficient (R) = 0.5. The weighted mean difference (WMD) for
continuous outcomes were computed between the magnesium
and control groups using a random-effect model. Between-study
heterogeneity was assessed using the I2 statistic, with 0–25%,
25.1–75%, and 75.1–100% representing a low, moderate, or high
degree of heterogeneity, respectively (18). Publication bias was
measured by the contour-enhanced funnel plots and Egger’s
linear regression test, with threshold of significance at P < 0.05.
The effects of individual studies on the pooled meta-analytic
results were determined with the sensitivity analysis (19).

Subgroup and dose-effect analyses

Subgroup analyses were made according to the participant’s
age and BMI, country, duration of disease, baseline magnesium
level and baseline glycemic control condition as well as
magnesium formulation, dosage and duration of intervention.
Meta-regression analyses were used to compare the subgroup
differences. In addition, dose-effect model was used to find the
optimal dosage and duration of magnesium intervention with
the R 4.2.0 software (The R Foundation Conference Committee,
USA).

Results

Study characteristics

Our primary search identified 1,860 publications in Web
of Science, PubMed and ScienceDirect (Figure 1). After
removing the duplicate literatures, 116 articles were screened
in detail. Among these, 92 records were removed, including
38 publications that were not RCTs, 24 publications that were
not conducted in T2D populations, 18 animal trials, and 12
review papers. Finally, 24 publications were included in the final
meta-analysis (Table 1).
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TABLE 1 Characteristics of included studies on magnesium intervention in type 2 diabetes mellitusa.

Reference Country Intervation
type

Sample
size

Age,
years

BMI,
kg/m2

Duration of
diabetes,
years

Elemental
magnesium
dose, mg/d

Intervation
duration, d

Jadad
score

Paolisso et al. (20) Italy Magnesium pidolate 8 72.2± 5.7 11.5± 3.1 171 28 3

Placebo 8 72.2± 5.7 11.5± 3.1

Paolisso et al. (21) Italy Magnesium pidolate 8 67.6± 4.8 30.5± 2.1 8.5± 3.3 256 28 4

Placebo 8 67.6± 4.8 30.5± 2.1 8.5± 3.3

Corica et al. (22) Italy Magnesium pidolate 26 63.0± 5.0 24.8± 0.7 10.7± 3.0 394 30 3

Placebo 17 61.0± 3.0 24.4± 0.4 9.9± 5.0

Gullestad et al. (23) Norway Magnesium-lactate-
citrate

25 25.4± 3.7 9.8± 8.6 365 120 4

Placebo 29 25.3± 4.1 10.1± 9.7

Paolisso et al. (24) Italy Magnesium pidolate 9 73.0± 7.5 25.8± 0.9 7.9± 3.6 384 28 4

Placebo 9 73.0± 7.5 25.8± 0.9 7.9± 3.6

Purvis et al. (25) USA Magnesium chloride 14 53.8± 12.8 32.2± 7.1 384 42 5

Placebo 14 53.8± 12.8 32.2± 7.1

Eibl et al. (41) Austria Magnesium citrate 18 63.0± 8.0 27.5± 3.2 7.6± 6.9 729 90 4

Placebo 20 54.0± 1.5 29.3± 5.0 6.1± 5.2

Eriksson and
Kohvakka (26)

Finland Magnesium 27 61.0± 10.4 28.9± 4.2 10.0± 5.2 600 90 4

Ascorbic acid 27 61.0± 10.4 28.9± 4.2 10.0± 5.2

de Lordes Lima et al.
(7)

Brazil Magnesium oxide 35 55.4± 10.2 25.3± 8.0 7.2± 4.9 503 30 5

Placebo 54 55.5± 8.3 25.5± 6.5 7.3± 5.4

de Lordes Lima et al.
(7)

Brazil Magnesium oxide 39 51.2± 11.0 25.5± 6.5 7.1± 5.5 1006 30 5

Placebo 54 55.5± 8.3 25.5± 6.5 7.3± 5.4

de Valk et al. (27) The Netherlands Magnesium-
aspartate-HCl

25 63.0± 8.2 28.7± 5.4 16.1± 8.1 365 90 3

Placebo 25 62.0± 7.3 27.1± 4.5 15.1± 7.6

Rodríguez-Morán
and
Guerrero-Romero
(28)

Mexico Magnesium chloride 32 59.7± 8.3 27.6± 9.1 8.8± 4.9 450 112 5

Placebo 31 54.1± 9.6 28.6± 4.2 9.4± 5.5

Barragán-Rodríguez
et al. (29)

Mexico Magnesium chloride 12 69.0± 5.9 11.8± 7.9 450 84 3

Imipremine 9 66.4± 6.1 8.6± 5.7

Guerrero-Romero
and
Rodríguez-Morán
(30)

Mexico Magnesium chloride 40 58.9± 8.5 29.9± 5.2 10.4± 6.3 450 120 5

Placebo 39 60.5± 9.4 29.0± 5.1 10.5± 6.0

Barbagallo et al. (31) Italy Magnesium pidolate 30 71.0± 4.9 368 30 3

Placebo 30 71.2± 4.6

Bhardwaj et al. (32) India Magnesium chloride 30 300 28, 56 and 112 3

Placebo 30

Navarrete-Cortes
et al. (33)

Mexico Magnesium lactate 56 52.8± 8.4 30.5± 5.7 360 90 5

Placebo 56 52.8± 8.4 30.5± 5.8

Solati et al. (34) Iran Magnesium sulphate 25 46.8± 9.0 26.2± 2.9 4.1± 4.2 300 90 5

Placebo 22 50.2± 6.9 26.9± 5.2 5.4± 4.0

(Continued)
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TABLE 1 (Continued)

Reference Country Intervation
type

Sample
size

Age,
years

BMI,
kg/m2

Duration of
diabetes,
years

Elemental
magnesium
dose, mg/d

Intervation
duration, d

Jadad
score

Singh et al. (35) India Magnesium chloride 60 300 28, 56 and 112 3

Placebo 60

ELDerawi et al. (36) Gaza Magnesium 20 51.2± 7.0 29.0± 5.1 250 90 3

Placebo 20 51.6± 8.3 30.0± 4.6

Razzaghi et al. (37) Iran Magnesium oxide 35 60.1± 11.1 28.2± 5.2 250 84 5

Placebo 35 59.0± 10.1 26.2± 4.1

Rashvand et al. (38) Iran Magnesium oxide 18 49.9± 7.8 29.7± 3.2 6.5± 3.4 500 60 5

Placebo 19 48.2± 14.2 29.3± 3.7 5.8± 3.1

Talari et al. (39) Iran Magnesium oxide 27 58.8± 10.1 27.2± 5.6 4.0± 1.0 250 168 5

Placebo 27 61.8± 10.2 26.1± 4.5 3.8± 1.0

Rashvand et al. (42) Iran Magnesium oxide 18 49.9± 7.8 29.7± 3.2 6.5± 3.4 300 60 5

Placebo 19 48.2± 14.2 29.3± 3.7 5.8± 3.1

Sadeghian et al. (40) Iran Magnesium oxide 40 41.2± 8.8 31.2± 5.5 13.2± 8.6 250 84 5

Placebo 40 42.8± 8.4 30.9± 4.4 12.8± 7.5

aData was presented as mean± SD. BMI, body mass index.

Effects of magnesium supplementation
on glycemic control

The effect of magnesium supplementation on FPG was
reported in 27 observations from 22 studies (7, 20–40). The
following analysis revealed that magnesium administration
decreased the FPG concentration, with a WMD value of –
0.20 mM (95% CI: –0.30, –0.09; I2 = 43.5%, Figure 2A).

Nine studies (20, 21, 28, 33, 34, 37–40) involving 495
T2D patients presented that oral magnesium had no significant
influence on plasma insulin concentration relative to the control
group (WMD: –0.26 mU/L; 95% CI: –1.47, 0.95; I2 = 62.6%,
Figure 2B).

Our meta-analysis of 17 interventions (7, 22, 23, 26–30,
33, 34, 36–41) found a significant reduction in HbA1c of T2D
populations received magnesium addition relative to the control
treatment (WMD: –0.22%; 95% CI: –0.41, –0.03; I2 = 35.1%,
Figure 2C).

We also explored whether magnesium administration
regulates insulin sensitivity through analyzing the HOMA-IR
data from the 8 studies (28, 33, 34, 36–40). However, no
significant difference in HOMA-IR was found between the
intervention and control group (WMD: –0.75; 95% CI: –1.64,
0.14; I2 = 86.4%, Figure 2D).

Effects of magnesium supplementation
on lipid metabolism

Ten eligible publications (22, 26–28, 33, 34, 37, 39, 41, 42)
suggested that there was no remarkable decrease in TC of T2D

cases between the magnesium and control groups (WMD: –
0.42 mg/dL; 95% CI: –7.49, 6.66; I2 = 0%, Figure 3A).

Our meta-analysis of 14 RCTs (22, 25–30, 33, 34, 37, 39–
42) demonstrated that magnesium treatment had no significant
effects on serum HDL-C concentrations than those with placebo
treatment (WMD: 0.58 mg/dL; 95% CI: –1.10, 2.27; I2 = 60.4%,
Figure 3B).

There were 10 studies reporting the influence of magnesium
addition on serum LDL-C levels (22, 25, 28, 33, 34,
37, 39–42). Further analysis indicated that no prominent
changes were found in LDL-C concentrations of T2D patients
after magnesium administration than the control group
(WMD: –0.65 mg/dL; 95% CI: –4.27, 2.98; I2 = 18.4%,
Figure 3C).

At last, 14 studies (22, 25–30, 33, 34, 37, 39–42)
involving 776 T2D persons demonstrated that circulating
TG concentrations were not disturbed by the magnesium
intervention (WMD: –0.95 mg/dL; 95% CI: –13.23, 11.33;
I2 = 29.9%, Figure 3D).

Effects of magnesium supplementation
on blood pressure

Our analysis of 8 eligible publications (25–31, 34)
demonstrated that magnesium treatment contributed to
reducing the SBP, with a WMD value of –7.69 mmHg (95%
CI: –11.71, –3.66; I2 = 36.7%, Figure 4A). On the other hand,
a meta-analysis of 8 studies (25–31, 34) indicated that DBP
of T2D patient was prominently decreased by the magnesium
intervention (WMD: –2.71 mmHg; 95% CI: –4.02, –1.40;
I2 = 0%, Figure 4B).
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FIGURE 2

Forest plots for the effects of magnesium supplementation on FPG (A), insulin (B), HbA1c (C), and HOMA-IR (D) compared to controls in pooled
analysis. For each study, the solid black circles represent the point estimate of the intervention effect. The horizontal line joins the lower and
upper limits of the 95% CI of this effect. The open diamonds represent the overall WMD determined with a random-effect model. FPG, fasting
plasma glucose; HbA1c, glycated hemoglobin; HOMA-IR, homeostasis model assessment-insulin resistance; WMD, weighted mean difference.

Subgroup analyses of magnesium
supplementation effects on glycemic
control

Subgroup analyses about the use of magnesium for 4
glycemic indicators presented that magnesium treatment
in patients with hypomagnesemia (plasma magnesemia
≤0.74 mM) (P = 0.020) or for a duration of ≥ 90 d (P = 0.013)
exhibited a stronger effect on reducing FPG of T2D cases than
respective other subgroups (Table 2).

As shown in Table 2, the influences of magnesium addition
on insulin concentration were stronger among >30 than
those BMI ≤ 30 kg/m2 (P < 0.001). In addition, T2D
person whose duration of diabetes ≤10 years had a greater
decline in circulating insulin concentration after magnesium
supplementation than that had a longer course of disease
(P < 0.001).

Compared with the American and European populations,
our analysis revealed that magnesium administration exerted
a significant effect on HbA1c in Asian T2D persons
(P = 0.027, Table 2). However, the other factors were not

significant determinants of between-study heterogeneity
for HbA1c change during the magnesium treatment
(P > 0.05).

Subgroup analyses revealed that magnesium addition
at ≥ 400 mg/d dosage (P = 0.003) or for ≥90 d duration
(P < 0.001) had a greater effect on HOMA-IR in T2D
persons those are from America (P = 0.001), or with
BMI ≤ 30 kg/m2 (P < 0.001), or with better baseline glycemic
control (HbA1c > 8, P < 0.001) or with diabetes ≤ 10 years
(P < 0.001) compared with the respective subgroups (Table 2).

Subgroup analyses of magnesium
supplementation effects on lipid
metabolism

Subgroup analyses based on the human health status
and operational details of intervention revealed no significant
differences in the influences of magnesium intervention on
circulating TC and TG concentrations in T2D cases (P > 0.05,
Table 2).
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FIGURE 3

Forest plots for the effects of magnesium supplementation on TC (A), HDL-C (B), LDL-C (C), and TG (D) compared to controls in pooled
analysis. For each study, the solid black circles represent the point estimate of the intervention effect. The horizontal line joins the lower and
upper limits of the 95% CI of this effect. The open diamonds represent the overall WMD determined with a random-effect model. HDL-C,
high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; TG, total triglyceride; WMD, weighted
mean difference.

FIGURE 4

Forest plots for the effects of magnesium supplementation on SBP (A) and DBP (B) compared to controls in pooled analysis. For each study, the
solid black circles represent the point estimate of the intervention effect. The horizontal line joins the lower and upper limits of the 95% CI of
this effect. The open diamonds represent the overall WMD determined with a random-effect model. DBP, diastolic blood pressure; SBP, systolic
blood pressure; WMD, weighted mean difference.

As shown in Table 2, our analysis revealed that
magnesium application at a dosage of 300–399 mg/d
(P < 0.001) exerted a more positive effect on increasing
the serum HDL-C concentrations in T2D patients
those were from America (P < 0.001), or with diabetes
≤10 years (P = 0.004). Subjects with BMI ≤ 30 kg/m2

(P = 0.015) or diagnosed as diabetes less than 10 years
(P = 0.006) had lower plasma LDL-C concentrations
after magnesium treatment. Furthermore, duration of
administration is also a potential source of heterogeneity

for the influences of magnesium on LDL-C variety
(P = 0.004).

Subgroup analyses of magnesium
supplementation effects on blood
pressure

The effect of magnesium addition on SBP was greater for
subject’s age ≤60 than those age > 60 years (P = 0.032).
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TABLE 2 Subgroup analyses for the effects of magnesium supplementation on glycemic, lipid and blood pressure parameters in type 2 diabetes
mellitus patientsa.

Parameter Subgroup n WMD (95% CI) I2 (%) P-valueb P-valuec

FPG Age, years

≤60 11 –0.12 (–0.47, 0.23) 40.9 0.487 0.056

>60 9 –0.18 (–0.31, –0.05) 0.0 0.006

Baseline BMI, kg/m2

≤30 14 –0.20 (–0.49, 0.09) 10.4 0.174 0.122

>30 4 –0.15 (–0.59, 0.28) 64.9 0.487

Region

America 7 –0.17 (–0.65, 0.31) 4.7 0.480 0.984

Asia 12 –0.20 (–0.35, –0.06) 67.9 0.007

Europe 8 –0.17 (–0.31, –0.04) 0.0 0.010

Baseline magnesium level, mM

≤0.74 14 –0.23 (–0.35, –0.10) 54.3 <0.001 0.020

>0.74 10 0.00 (–0.16, 0.16) 1.4 0.983

Baseline HbA1c

≤8 6 0.16 (–0.04, 0.36) 0.0 0.121 0.063

>8 10 –0.26 (–0.85, 0.33) 33.6 0.385

Duration of diabetes, years

≤10 11 –0.22 (–0.54, 0.11) 28.2 0.194 0.071

>10 6 0.11 (–0.09, 0.31) 0.0 0.276

Magnesium formulation

Inorganic 17 –0.18 (–0.31, –0.05) 54.6 0.008 0.715

Organic 9 –0.25 (–0.45, –0.06) 17.7 0.011

Dosage of intervation, mg/d

<300 6 –0.47 (–1.01, 0.06) 71.5 0.079 0.202

300–399 14 –0.20 (–0.29, –0.11) 33.0 <0.001

≥400 7 0.16 (–0.61, 0.94) 0.0 0.683

Duration of intervation, d

<30 5 –0.15 (–0.31, 0.00) 26.5 0.050 0.013

30–89 11 –0.12 (–0.28, 0.04) 42.5 0.129

≥90 11 –0.34 (–0.58, –0.11) 31.4 0.004

Insulin Age, years

≤60 6 0.03 (–1.19, 1.25) 62.5 0.961 0.053

>60 3 –1.15 (–4.66, 2.35) 53.5 0.520

Baseline BMI, kg/m2

≤30 5 –1.33 (–2.76, 0.10) 22.5 0.068 <0.001

>30 3 1.13 (0.73, 1.53) 0.0 <0.001

Region

America 2 –0.22 (–1.41, 0.96) 0.0 0.712 0.159

Asia 5 –0.81 (–3.13, 1.51) 76.7 0.673

Europe 2 0.71 (–2.11, 3.53) 0.0 0.621

Baseline magnesium level, mM

≤0.74 1 –0.66 (–2.37, 1.05) – 0.450 0.072

>0.74 7 –0.37 (–1.93, 1.19) 66.9 0.639

Baseline HbA1c

≤8 4 0.03 (–1.48, 1.54) 68.8 0.966 0.107

>8 3 –1.17 (–3.93, 1.60) 55.3 0.408

Duration of diabetes, years

≤10 5 –4.56 (–7.74, –1.38) 82.9 0.005 <0.001
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TABLE 2 (Continued)

Parameter Subgroup n WMD (95% CI) I2 (%) P-valueb P-valuec

>10 2 –1.02 (–9.85, 7.81) 81.0 0.821

Magnesium formulation

Inorganic 6 –0.69 (–2.47, 1.08) 75.8 0.443 0.426

Organic 3 0.31 (–1.11, 1.74) 0.0 0.664

Dosage of intervation, mg/d

<300 5 –0.43 (–2.41, 1.55) 73.2 0.671 0.079

300–399 2 0.36 (–1.21, 1.93) 0.0 0.655

≥400 2 –0.87 (–2.52, 0.79) 0.0 0.306

Duration of intervation, d

<30 2 0.71 (–2.11, 3.53) 0.0 0.621 0.220

30–89 3 –1.66 (–5.90, 2.58) 82.0 0.443

≥90 4 –0.43 (–1.42, 0.56) 0.0 0.393

HbA1c Age, years

≤60 10 –0.42 (–0.73, –0.11) 40.5 0.007 0.933

>60 6 –0.08 (–0.37, 0.21) 26.2 0.568

Baseline BMI, kg/m2

≤30 14 –0.24 (–0.50, 0.03) 43.5 0.083 0.211

>30 2 –0.16 (–0.25, –0.07) 0.0 <0.001

Region

America 6 –0.51 (–1.03, 0.01) 2.1 0.057 0.027

Asia 6 –0.35 (–0.60, –0.10) 53.7 0.006

Europe 5 0.20 (–0.12, 0.51) 0.0 0.226

Baseline magnesium level, mM

≤0.74 8 –0.37 (–0.83, 0.10) 43.3 0.122 0.403

>0.74 8 –0.22 (–0.38, –0.06) 21.0 0.009

Baseline HbA1c

≤8 7 –0.11 (–0.35, 0.13) 30.7 0.358 0.060

>8 10 –0.35 (–0.66, –0.04) 27.7 0.026

Duration of diabetes, years

≤10 10 –0.22 (–0.59, 0.16) 47.7 0.26 0.450

>10 6 –0.14 (–0.32, 0.03) 7.30 0.101

Magnesium formulation

Inorganic 10 –0.33 (–0.55, –0.11) 33.6 0.003 0.372

Organic 6 –0.06 (–0.45, 0.34) 40.4 0.782

Dosage of intervation, mg/d

<300 4 –0.41 (–0.70, –0.13) 69.8 0.005 0.129

300–399 5 0.17 (–0.19, 0.53) 0.00 0.349

≥400 8 –0.20 (–0.63, 0.22) 23.6 0.350

Duration of intervation, d

30–89 7 –0.18 (–0.26, –0.09) 0.0 <0.001 0.474

≥90 10 –0.25 (–0.64, 0.14) 51.9 0.214

HOMA-IR Age, years

≤60 7 –0.66 (–1.59, 0.28) 87.6 0.168 0.070

>60 1 –1.60 (–3.54, 0.34) – 0.106

Baseline BMI, kg/m2

≤30 6 –1.13 (–2.09, –0.18) 71.7 0.020 <0.001

>30 2 0.41 (–0.31, 1.14) 36.3 0.264

Region

America 2 –0.72 (–1.30, –0.14) 0.0 0.015 0.001

(Continued)

Frontiers in Nutrition 09 frontiersin.org

https://doi.org/10.3389/fnut.2022.1020327
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1020327 January 12, 2023 Time: 15:7 # 10

Xu et al. 10.3389/fnut.2022.1020327

TABLE 2 (Continued)

Parameter Subgroup n WMD (95% CI) I2 (%) P-valueb P-valuec

Asia 6 –0.85 (–2.06, 0.36) 87.6 0.169

Baseline magnesium level, mM

≤ 0.74 2 –2.18 (–5.05, 0.69) 91.9 0.136 0.101

>0.74 6 –0.13 (–0.83, 0.58) 60.9 0.724

Baseline HbA1c

≤8 4 0.01 (–0.74, 0.77) 64.8 0.978 <0.001

>8 4 –1.45 (–2.99, 0.09) 80.3 0.065

Duration of diabetes, years

≤10 5 –1.07 (–2.14, 0.00) 76.6 0.050 <0.001

>10 1 0.60 (0.34, 0.86) – <0.001

Magnesium formulation

Inorganic 6 –0.31 (–1.10, 0.48) 79.5 0.444 0.101

Organic 2 –2.02 (–5.36, 1.33) 90.4 0.237

Dosage of intervation, mg/d

<300 4 –1.12 (–2.67, 0.43) 92.4 0.158 0.003

300–399 2 –0.08 (–1.17, 1.01) 0.00 0.881

≥400 2 –0.80 (–1.42, –0.19) 0.00 0.011

Duration of intervation, d

30–89 3 –0.34 (–1.91, 1.22) 67.1 0.666 <0.001

≥90 5 –0.95 (–1.96, 0.05) 77.2 0.062

TC Age, years

≤60 5 –3.81 (–15.38, 7.75) 20.9 0.518 0.581

>60 5 1.73 (–8.68, 12.15) 0.0 0.744

Baseline BMI, kg/m2

≤30 9 –3.62 (–11.74, 4.50) 0.0 0.382 0.115

>30 1 9.67 (–4.74, 24.08) – 0.188

Region

America 2 4.16 (–14.11, 22.42) 28.0 0.656 0.244

Asia 4 –7.68 (–18.87, 3.51) 0.0 0.179

Europe 4 2.81 (–9.86, 15.47) 0.0 0.664

Baseline magnesium level, mM

≤0.74 3 1.53 (–14.01, 17.06) 0.0 0.847 0.783

>0.74 7 –0.93 (–8.87, 7.02) 0.0 0.819

Baseline HbA1c

≤8 4 –1.08 (–12.2, 10.03) 16.0 0.849 0.844

>8 5 1.10 (—9.86, 12.05) 0.0 0.845

Duration of diabetes, years

≤10 6 –5.85 (–16.31, 4.61) 0.0 0.273 0.583

>10 2 0.02 (–18.11, 18.15) 0.0 0.999

Magnesium formulation

Inorganic 5 –8.10 (–18.67, 2.48) 0.0 0.133 0.103

Organic 4 4.37 (–6.24, 14.99) 0.0 0.419

Dosage of intervation, mg/d

<300 2 –5.73 (–18.5, 7.03) 0.0 0.379 0.617

300–399 5 2.11 (–8.04, 12.26) 0.0 0.683

≥400 3 1.53 (–14.01, 17.06) 0.0 0.847

Duration of intervation, d

30–89 3 –4.25 (–17.54, 9.05) 0.0 0.531 0.505

≥90 7 0.95 (–7.63, 9.53) 3.4 0.828

(Continued)
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TABLE 2 (Continued)

Parameter Subgroup n WMD (95% CI) I2 (%) P-valueb P-valuec

TG Age, years

≤60 8 0.76 (–16.71, 18.23) 43.3 0.932 0.259

>60 6 –5.24 (–21.76, 11.29) 0.0 0.535

Baseline BMI, kg/m2

≤30 10 –0.97 (–13.76, 11.83) 0.0 0.882 0.259

>30 3 –0.99 (–40.68, 38.71) 82.4 0.961

Region

America 5 –19.00 (–42.89, 4.90) 19.6 0.119 0.052

Asia 5 7.70 (–6.42, 21.82) 21.2 0.285

Europe 4 3.60 (–19.89, 27.08) 0.0 0.764

Baseline magnesium level, mM

≤0.74 5 –5.62 (–33.47, 22.23) 13.7 0.692 0.337

>0.74 8 8.30 (–2.18, 18.78) 0.0 0.121

Baseline HbA1c

≤8 5 12.34 (0.21, 24.48) 0.0 0.046 0.121

>8 7 –4.12 (–20.98, 12.75) 0.0 0.633

Duration of diabetes, years

≤10 6 2.20 (–14.96, 19.36) 0.0 0.801 0.353

>10 5 2.79 (–20.74, 26.32) 39.5 0.816

Magnesium formulation

Inorganic 9 –5.11 (–22.22, 12.01) 49.2 0.559 0.857

Organic 4 –0.42 (–22.31, 21.48) 0.0 0.970

Dosage of intervation, mg/d

<300 3 7.07 (–12.76, 26.89) 58.1 0.485 0.163

300–399 6 –8.52 (–26.67, 9.64) 9.20 0.358

≥400 5 –5.62 (–33.47, 22.23) 13.7 0.692

Duration of intervation, d

30-89 6 –8.03 (–31.96, 15.91) 67.8 0.511 0.988

≥90 8 2.71 (–12.45, 17.87) 0.0 0.726

HDL-C Age, years

≤60 8 0.78 (–1.45, 3.01) 76.6 0.495 0.091

>60 6 0.44 (–2.19, 3.06) 0.0 0.744

Baseline BMI, kg/m2

≤30 10 0.54 (–1.01, 2.10) 0.0 0.494 0.102

>30 3 0.51 (–3.32, 4.33) 90.3 0.795

Region

America 5 1.61 (0.06, 3.17) 0.0 0.042 <0.001

Asia 5 –0.76 (–2.75, 1.24) 43.1 0.458

Europe 4 0.60 (–3.10, 4.30) 0.0 0.752

Baseline magnesium level, mM

≤ 0.74 5 0.49 (–1.81, 2.79) 0.0 0.676 0.103

>0.74 8 –0.09 (–1.99, 1.81) 46.6 0.929

Baseline HbA1c

≤8 5 –0.54 (–2.85, 1.78) 50.1 0.649 0.106

>8 7 0.51 (–1.35, 2.37) 0.0 0.591

Duration of diabetes, years

≤10 6 0.43 (–1.39, 2.24) 0.0 0.647 0.004

>10 5 –1.81 (–3.59, –0.03) 7.70 0.047

Magnesium formulation

(Continued)
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Parameter Subgroup n WMD (95% CI) I2 (%) P-valueb P-valuec

Inorganic 9 0.43 (–1.62, 2.47) 70.0 0.682 0.128

Organic 4 1.48 (–1.49, 4.45) 0.0 0.329

Dosage of intervation, mg/d

<300 3 –1.48 (–3.34, 0.38) 41.6 0.119 <0.001

300–399 6 2.07 (0.37, 3.77) 0.0 0.017

≥400 5 0.49 (–1.81, 2.79) 0.0 0.676

Duration of intervation, d

30–89 6 0.32 (–2.49, 3.12) 74.9 0.825 0.101

≥90 8 0.76 (–0.88, 2.40) 0.0 0.365

LDL-C Age, years

≤60 7 0.22 (–3.30, 3.74) 17.9 0.902 0.193

>60 3 –6.10 (–17.69, 5.50) 1.3 0.303

Baseline BMI, kg/m2

≤30 7 –7.75 (–15.43, –0.07) 0.0 0.048 0.015

>30 3 2.12 (0.06, 4.18) 0.0 0.044

Region

America 3 –0.56 (–5.81, 4.69) 0.0 0.833 0.146

Asia 5 –1.58 (–8.35, 5.18) 32.4 0.646

Europe 2 –13.33 (–30.09, 3.43) 0.0 0.119

Baseline magnesium level, mM

≤0.74 2 –14.18 (–33.16, 4.80) 0.0 0.143 0.102

>0.74 7 –1.06 (–5.87, 3.76) 19.5 0.667

Baseline HbA1c

≤8 5 –3.95 (–11.8, 3.89) 49.4 0.323 0.225

>8 3 –5.34 (—16.72, 6.05) 0.0 0.358

Duration of diabetes, years

≤10 5 –10.94 (–20.30, –1.57) 0.0 0.022 0.006

>10 2 2.54 (0.31, 4.77) 0.0 0.025

Magnesium formulation

Inorganic 7 1.63 (–0.74, 4.00) 2.60 0.177 0.061

Organic 3 –7.45 (–16.99, 2.08) 0.0 0.126

Dosage of intervation, mg/d

<300 3 0.53 (–5.76, 6.81) 27.7 0.870 0.093

300–399 5 –1.69 (–6.59, 3.21) 0.0 0.499

≥400 2 –14.18 (–33.16, 4.80) 0.0 0.143

Duration of intervation, d

30-89 5 2.25 (0.19, 4.31) 0.0 0.033 0.004

≥90 5 –9.29 (–16.90, –1.67) 0.0 0.017

SBP Age, years

≤60 4 –10.25 (–15.02, –5.47) 47.6 <0.001 0.032

>60 4 –1.59 (—8.09, 4.92) 0.0 0.632

Baseline BMI, kg/m2

≤30 5 –7.91 (–14.43, –1.40) 57.1 0.017 0.392

>30 1 –7.37 (–10.87, –3.87) – <0.001

Region

America 4 –9.22 (–14.94, –3.49) 51.4 0.002 0.125

Asia 1 –11.5 (–20.22, –2.78) – 0.010

Europe 3 –1.59 (–8.61, 5.44) 0.0 0.658

Baseline magnesium level, mM

(Continued)
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TABLE 2 (Continued)

Parameter Subgroup n WMD (95% CI) I2 (%) P-valueb P-valuec

≤0.74 5 –7.81 (–14.67, –0.95) 41.5 0.026 0.480

>0.74 2 –5.14 (–18.98, 8.70) 70.0 0.467

Duration of diabetes, years

≤10 3 –7.41 (–13.12, –1.69) 0.0 0.011 0.377

>10 3 –6.06 (–19.33, 7.22) 74.6 0.371

Magnesium formulation

Inorganic 5 –9.71 (–14.13, –5.28) 38.3 <0.001 0.046

Organic 2 1.80 (–9.09, 12.69) 0.0 0.746

Dosage of intervation, mg/d

300–399 4 –6.86 (–11.26, –2.46) 17.8 0.002 0.269

≥400 4 –8.24 (–15.8, –0.67) 51.4 0.033

Duration of intervation, d

30–89 3 –7.00 (–10.39, –3.61) 0.0 <0.001 0.314

≥90 5 –7.91 (–14.43, –1.40) 57.1 0.017

DBP Age, years

≤60 4 –3.94 (–6.60, –1.28) 31.2 0.004 0.366

>60 4 –2.02 (–4.01, –0.04) 0.0 0.046

Baseline BMI, kg/m2

≤30 5 –4.08 (–6.85, –1.31) 5.90 0.004 0.280

>30 1 –2.27 (–4.32, –0.22) – 0.030

Region

America 4 –2.77 (–4.52, –1.03) 0.0 0.002 0.214

Asia 1 –6.31 (–10.88, –1.74) – 0.007

Europe 3 –1.78 (–3.98, 0.42) 0.0 0.113

Baseline magnesium level, mM

≤0.74 5 –2.68 (–4.58, –0.78) 0 0.006 0.428

>0.74 2 –3.55 (–10.10, 3.00) 57.6 0.288

Duration of diabetes, years

≤10 3 –4.15 (–7.35, –0.95) 0.0 0.011 0.803

>10 3 –3.55 (–7.50, 0.40) 24.4 0.078

Magnesium formulation

Inorganic 5 –3.40 (–5.24, –1.57) 8.40 <0.001 0.314

Organic 2 –1.74 (–4.13, 0.66) 0 0.155

Dosage of intervation, mg/d

300–399 4 –2.54 (–4.23, –0.86) 14.3 0.003 0.516

≥400 4 –3.56 (–6.43, –0.69) 0.0 0.015

Duration of intervation, d

30–89 3 –2.26 (–3.77, –0.76) 0.0 0.003 0.234

≥90 5 –4.08 (–6.85, –1.31) 5.9 0.004

aDBP, diastolic blood pressure; FPG, fasting plasma glucose; HbA1c, glycated hemoglobin; HDL-C, high-density lipoprotein cholesterol; HOMA-IR, homeostasis model assessment of
insulin resistance; TC, total cholesterol; TG, total triglycerides; LDL-C, low-density lipoprotein cholesterol; SBP, systolic blood pressure; WMD, weighted mean difference.
bP values for heterogeneity within each subgroup.
cP values for subgroup differences between groups.

Besides, the effect of magnesium intervention on SBP
was stronger for inorganic supplements than for organic
supplements (P = 0.046). However, factors about the
human baseline metabolic status and mode of intervention
had no effects on the influence of magnesium on DBP
(P > 0.05).

Dose-effect analyses

The dose-effect analyses showed that the optimal dosages of
magnesium addition for FPG, insulin, HbA1c and HOMA-IR
were 171, 218, 476 and 250 mg/d, respectively (Figures 5A–D).
The optimal durations of magnesium administration for FPG,
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FIGURE 5

The effects of dosage or duration of magnesium intervention on glycemic control for FPG (A,E), insulin (B,F), HbA1c (C,G), and HOMA-IR (D,H),
respectively. FPG, fasting plasma glucose; HbA1c, glycated hemoglobin; HOMA-IR, homeostasis model assessment-insulin resistance.

insulin, HbA1c and HOMA-IR were 124, 132, 111 and 95 d,
respectively (Figures 5E–H).

The dose-effects of magnesium intervention on 4 serum
lipids indicators were shown in Figure 6. The optimal dosages
of magnesium supplementation that may mediate TC, TG,
HDL-C and LDL-C were 300, 438, 250 and 729 mg/d,
respectively (Figures 6A–D). In addition, the optimal durations
of magnesium supplementation that may mediate TC, TG,
HDL-C and LDL-C were 128, 46, 81 and 98 d, respectively
(Figures 6E–H).

As presented in Figure 7, the optimal dosages of magnesium
addition for SBP and DBP were both 300 mg/d, respectively
(Figures 7A,B). The optimal durations of magnesium
supplementation for SBP and DBP were both 120 d, respectively
(Figures 7C,D).

Publication bias and sensitivity analysis

As shown in Table 3 and Supplementary Figures 1–3,
no significant publication bias were found for the effects of
intervention on FPG, insulin, HbA1c, HOMA-IR, SBP and DBP
(all P > 0.05). For the effects of magnesium supplementation
on improving the levels of serum lipids, significant publication
bias were found for HDL-C and LDL-C (P = 0.001 and
P = 0.008, respectively), but not for TC and TG (P = 0.109

and P = 0.142, respectively). Furthermore, sensitivity analyses
showed that no single study had an effect on the pooled effect
size (Supplementary Figures 4–6).

Discussion

We analyzed the data from 24 RCTs with 1,325
cases across 11 countries, which offered the most up-to-
date evidence demonstrating the effects and operational
details of oral magnesium on improving hyperglycemia,
hypercholesterolemia, and hypertension in T2D patients.

The increased prevalence of hypomagnesaemia identified
in diabetic cases informs the design and development of
magnesium supplementation to ameliorate the status of T2D
patients (43). Similar to previous review that magnesium
supplementation for 1 to 4 months reduced FPG (14), and
contrary to the meta-analysis done by Chua et al. (44) that
routine magnesium intervention had no effects on HbA1c,
our updated findings revealed that oral magnesium both
significantly decreased the FPG and increased the HbA1c in
T2D persons, highlighting the important role of magnesium
in improving the short- and long-term glycemic control.
Magnesium may improve glucose metabolism via several
pathways. One possible explanation for this observation is
that Mg2+ may adjust for the rate of glucokinase activity
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FIGURE 6

The effects of dosage or duration of magnesium intervention on lipid metabolism for TC (A,E), TG (B,F), HDL-C (C,G), and LDL-C (D,H),
respectively. HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; TG, total
triglyceride.

FIGURE 7

The effects of dosage or duration of magnesium intervention on blood pressure for SBP (A,C) and DBP (B,D), respectively. DBP, diastolic blood
pressure; SBP, systolic blood pressure.

and then regulated the glucose utilization (45). In addition,
binding of MgATP, an adenine nucleotide, to the sulfonylurea
receptor 1 affects the opening of the ATP-sensitive K+ channel
that controls the membrane depolarization and subsequent
exocytosis of insulin-containing granules (45), which further
mediated the circulating glucose concentration. At last, it
is established that magnesium may play key roles on other
parameters closely related to glucose metabolism, including
body composition, general health, and sleep quality (46).

Further subgroup analysis showed that baseline magnesium
concentration is a main factor contributing to the heterogeneity
on the effects of magnesium on FPG. Blaine et al. (47)
pointed out that higher magnesium supply rapidly elevates
its renal output, suggesting that basal magnesium status may
be associated with the efficacy of magnesium administration.
Previous work indicated that magnesium deficiency decreased
insulin sensitivity throughout blocking insulin pathways to
trigger the acute phaseresponse (48). Although our overall
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TABLE 3 Publication bias examined by Egger’s linear regression testa.

Parameters P for Egger’s test

Glycemic indicators

FPG 0.662

Insulin 0.085

HbA1c 0.619

HOMA-IR 0.082

Lipid indicators

TC 0.109

TG 0.142

HDL-C 0.001

LDL-C 0.008

Blood pressure indicators

SBP 0.403

DBP 0.454

aDBP, diastolic blood pressure; FPG, fasting plasma glucose; HbA1c, glycated
hemoglobin; HDL-C, high-density lipoprotein cholesterol; HOMA-IR, homeostasis
model assessment-insulin resistance; LDL-C, low-density lipoprotein cholesterol; SBP,
systolic blood pressure; TC, total cholesterol; TG, total triglyceride.

ungrouped analysis showed no significant effects of magnesium
on HOMA-IR, subgroup analyses demonstrated that patient’s
health status and mode of intervention are both the remarkable
determinants of heterogeneity, suggesting that the clinical
application of magnesium addition for increasing insulin
sensitivity should be flexible specific to each person’s settings.

Subgroup analysis in current study showed that magnesium
administration at 300-399 mg/d dosage led to an increase
in plasma HDL-C concentrations in patients with T2D from
America, which was supported by prevenient research that
the beneficial effect of magnesium on dyslipidemia partly
resulted from the generation of HDL by depressing HMG-
CoA reductase and stimulation of lecithin cholesterol acyl
transferase (49). On the other hand, a recent study showed
that magnesium supplementation reduced lipid deposition in
hepatocytes by activating autophagy by activating the AMPK-
mTOR pathway, indicating a relationship between magnesium
and lipid accumulation (50). Furthermore, Sales et al. (51)
observed that the increased insulin sensitivity occurred after
magnesium addition in our current study may also help to
improve the dyslipidemia. The present results showed that
magnesium supplementation also lessened the hyperglycemia
of T2D patients whose baseline BMI ≤ 30 kg/m2 or durations
of diabetes ≤10 years through decreasing the plasma LDL-C
concentrations. Ample evidence indicated that dietary intake of
divalent cations including magnesium promoted fecal excretion
of fat (52), implying that the reduced serum LDL-C after
magnesium intervention may be in part due to the inhibition
of absorption. It is noteworthy that magnesium addition may
also increase serum LDL-C concentrations in obese T2D cases
with longer duration of diabetes, which implied that the
clinical application of magnesium supplementation in relieving

hyperglycemia should be performed in early stage of diabetes
specific to each patient’s metabolic status.

Contrary to the study done by Song et al. (14) and in
line with previous findings reported by Asbaghi et al. (53) and
Zhang et al. (54), our pooled results with a greater number
of RCTs proved that magnesium supplementation induced
a profound decline in blood pressure of T2D patients. Wu
et al. (55) further found that every 0.1 mmol/L increment
in circulating serum magnesium level was associated with
a 4% reduction in hypertension incidence. Accumulating
evidence illustrated that magnesium released intracellular
sodium and calcium stores through triggering membrane -
Na+/K+ -ATPase and thereby decreases the blood hypertension
through reduces the peripheral vascular resistance (56).
Secondly, magnesium reduces hypertension may also attribute
to its influences on the abundance of osteopontin, matrix
Gla protein, and receptor potential melastin 7 (TRPM7),
which were collectively observed to depress the vascular
calcification (57). Thirdly, magnesium can also decrease
vascular tone by releasing the nitric oxide (NO) from the
coronary endothelium as well as resisting the influences of
vasoconstrictor molecules such as calcium, bradykinin, or
serotonin (58). Similar to previous research by Asbaghi et al.
(53), our data exhibited that supplementation with inorganic
magnesium had more positive effects on reducing blood
pressure than the organic formulation. Magnesium is absorbed
by both passive diffusion and active transport (59). Given
that lower magnesium intakes may elevate the role of active
process, it is possible that the amount of magnesium intake
may regulate the magnesium absorption from compounds
with different properties (60). However, the bioavailability
of magnesium from inorganic and organic supplements,
including absorption, retention or urinary excretion, needs to
be further assessed.

With respect to the contradictory results from former
trials, our updated meta-analysis increased the statistical power
to systematically examine the effects of oral magnesium on
indicators of glycemic control, lipid metabolism and blood
pressure that related to complications in T2D individuals (61,
62). On this foundation, we followed subgroup and dose-
effect analyses to explore the potential factors influencing
the effects of magnesium administration, which provided a
key reference for clinical application of this strategy in T2D
patients. However, several limitations merit consideration. First,
some of the included publications had small groups, such as
<30 persons/group). Second, magnesium formulation, dosage
and duration varied across different RCTs, which induced
differential results and resulted in difficulties in assessing the real
effect of magnesium supplementation. Third, some RCTs offered
limited consideration to alimentary magnesium intake that may
influence the effects of magnesium treatment. Nevertheless, the
likelihood of this bias has been evaluated through the subgroup
analysis based on the baseline circulating magnesium levels.

Frontiers in Nutrition 16 frontiersin.org

https://doi.org/10.3389/fnut.2022.1020327
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1020327 January 12, 2023 Time: 15:7 # 17

Xu et al. 10.3389/fnut.2022.1020327

Conclusion

In summary, our findings indicated that magnesium
supplementation had profitable effects on serum glucose,
lipids, and pressure controls. Subgroup analyses revealed that
magnesium administration in patients with hypomagnesemia
or for a duration of ≥90 d exhibited a stronger effect on
decreasing FPG, while intervention at ≥400 mg/d dosage or
for ≥90 d duration had a greater effect on HOMA-IR in T2D
persons with BMI ≤ 30 kg/m2 or baseline HbA1c > 8% or
duration of diabetes≤10 years. Subjects with BMI≤ 30 kg/m2 or
diagnosed as diabetes less than 10 years had lower plasma LDL-
C concentrations, and American T2D patients received a dosage
of 300–399 mg/d had greater HDL-C concentrations after
oral magnesium supplementation. In addition, the inorganic
magnesium supplements were more beneficial for lowering the
SBP of younger T2D populations. At last, 279 mg/d for 116 d,
429 mg/d for 88 d and 300 mg/120 d are the average optimal
dosage and duration for improving glycemic, circulating lipids,
and blood pressure controls, respectively. Taken together, our
study provide clinically relevant information on the adjuvant
therapy of magnesium for T2D. In the future, guidelines
for clinical practice of magnesium supplementation including
dosage and duration according to each individual’s health
status as well as the chronic safety of magnesium addition at
high dosages should be further assessed in large multinational
prospective RCTs, and the causal effects would be explored
(3, 63–67).
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