194 research outputs found

    phenomenological simulators of critical infrastructures

    Get PDF
    The objective of this chapter is to introduce and discuss the main phenomenological approaches that have been used within the CI M&S area. Phenomenological models are used to analyse the organizational phenomena of the society considering its complexity (finance, mobility, health) and the interactions among its different components. Within CI MA&S, different modelling approaches have been proposed and used as, for example, physical simulators (e.g. power flow simulators for electrical networks). Physical simulators are used to predict the behaviour of the physical system (the technological network) under different conditions. As an example, electrical engineers use different kind of simulators during planning and managing of network activities for different purposes: (1) power flow simulators for the evaluation of electrical network configuration changes (that can be both deliberate changes or results from of the effects of accidents and/or attacks) and contingency analysis, (2) real time simulators for the design of protection devices and new controllers. For the telecommunication domain one mat resort to network traffic simulators as for example ns2/ns3 codes that allow the simulation of telecommunication networks (wired/wireless) at packet switching level and evaluate its performances. Single domains simulators can be federated to analyse the interactions among different domains. In contrast, phenomenological simulators use more abstract data and models for the interaction among the different components of the system. The chapter will describe the main characteristic of some of the main simulation approaches resulting from the ENEA and UBC efforts in the CIP and Complexity Science field

    Clinical significance and therapeutic value of glutathione peroxidase 3 (GPx3) in hepatocellular carcinoma

    Get PDF
    AIMS: We aimed to investigate the clinical significance of GPx3 in hepatocellular carcinoma (HCC) and to characterize its tumor suppressive role. METHODS: HCC patients (113) who underwent hepatectomy were recruited to examine the clinical relevance of GPx3. The tumor suppressive role of GPx3 was studied by administration of recombinant GPx3 (rGPx3) or over-expression of GPx3 in HCC cells in vitro and in vivo. The therapeutic value of GPx3 for HCC was further investigated using human induced pluripotent stem cell derived mesenchymal stem cells (hiPSC-MSCs) as its delivery vehicle. RESULTS: Down-regulation of GPx3 significantly correlated with advanced tumor stage (P = 0.024), venous infiltration (P = 0.043) and poor overall survival (P = 0.007) after hepatectomy. Lower plasma GPx3 in HCC patients was significantly associated with larger tumor size (P = 0.011), more tumor nodules (P = 0.032) and higher recurrence (P = 0.016). Over-expression of GPx3 or administration of rGPx3 significantly inhibited proliferation and invasiveness of HCC cells in vitro and in vivo. Tumor suppressive activity of GPx3 was mediated through Erk-NFκB-SIP1 pathway. GPx3 could be delivered by hiPSC-MSCs into the tumor and exhibited tumor suppressive activity in vivo. CONCLUSIONS: GPx3 is a tumor suppressor gene in HCC and may possess prognostic and therapeutic value for HCC patients.published_or_final_versio

    Glutathione Peroxidase 3 Delivered by hiPSC-MSCs Ameliorated Hepatic IR Injury via Inhibition of Hepatic Senescence

    Get PDF
    Background and Aims: Down-regulation of GPx3 accelerated hepatic senescence, which further caused overwhelming inflammation and severe liver graft injury. MSCs derived from human induced pluripotent stem cells (hiPSC-MSCs) have been developed as more efficient delivery vehicle with the property of injury tropism. Here, we aimed to explore the suppressive role of GPx3 in hepatic IR injury using novel delivery system of hiPSC-MSCs. Methods: The mice IR injury model with partial hepatectomy was established. The engineered hiPSC-MSCs delivering GPx3 was constructed. All the mice were segregated into three groups. hiPSC-MSC-GPx3, hiPSC-MSC-pCDH (vector control) or PBS were injected via portal vein after reperfusion. Liver injury was evaluated by histological and serological test. Hepatic apoptosis was detected by Tunel staining and remnant liver regeneration was assessed by Ki67 staining. The role of hepatic senescence in liver graft injury was evaluated in rat orthotopic liver transplantation model. The suppressive effect of GPx3 on hepatic senescence was examined in mice IR injury model and confirmed in vitro. Hepatic senescence was detected by SA-β-Gal and P16/ink4a staining. Results: GPx3 can be successfully delivered by hiPSC-MSCs into liver tissues. Histological examination showed that hiPSC-MSC-GPx3 treatment significantly ameliorated hepatic IR injury post-operation. Significantly lower LDH (891.43±98.45 mU/mL, P<0.05) and AST (305.77±36.22 IU/L, P<0.01) were observed in hiPSC-MSC-GPx3 group compared with control groups. Less apoptotic hepatocytes were observed and the remnant liver regeneration was more active in hiPSC-MSC-GPx3 group. In rat orthotopic liver transplantation model, more senescent hepatocytes were observed in small-for-size liver graft, in which GPx3 expression was significantly compromised. In mice IR injury model, hiPSC-MSC-GPx3 significantly suppressed hepatic senescence. In addition, rGPx3 inhibited cellular senescence of liver cells in a dose dependent manner. Four candidate genes (CD44, Nox4, IFNG, SERPERINB2) were identified to be responsible for suppressive effect of GPx3 on hepatic senescence. Conclusion: Engineered hiPSC-MSCs delivering GPx3 ameliorated hepatic IR injury via inhibition of hepatic senescence.published_or_final_versio

    RASSF1A inhibits PDGFB-driven malignant phenotypes of nasopharyngeal carcinoma cells in a YAP1-dependent manner.

    Get PDF
    Nasopharyngeal carcinoma (NPC) is a highly aggressive tumor characterized by distant metastasis. Deletion or down-regulation of the tumor suppressor protein ras-association domain family protein1 isoform A (RASSF1A) has been confirmed to be a key event in NPC progression; however, little is known about the effects or underlying mechanism of RASSF1A on the malignant phenotype. In the present study, we observed that RASSF1A expression inhibited the malignant phenotypes of NPC cells. Stable silencing of RASSF1A in NPC cell lines induced self-renewal properties and tumorigenicity in vivo/in vitro and the acquisition of an invasive phenotype in vitro. Mechanistically, RASSF1A inactivated Yes-associated Protein 1 (YAP1), a transcriptional coactivator, through actin remodeling, which further contributed to Platelet Derived Growth Factor Subunit B (PDGFB) transcription inhibition. Treatment with ectopic PDGFB partially increased the malignancy of NPC cells with transient knockdown of YAP1. Collectively, these findings suggest that RASSF1A inhibits malignant phenotypes by repressing PDGFB expression in a YAP1-dependent manner. PDGFB may serve as a potential interest of therapeutic regulators in patients with metastatic NPC

    Molecular mechanisms and cellular functions of cGAS-STING signalling

    Get PDF
    The cGAS–STING signalling axis, comprising the synthase for the second messenger cyclic GMP–AMP (cGAS) and the cyclic GMP–AMP receptor stimulator of interferon genes (STING), detects pathogenic DNA to trigger an innate immune reaction involving a strong type I interferon response against microbial infections. Notably however, besides sensing microbial DNA, the DNA sensor cGAS can also be activated by endogenous DNA, including extranuclear chromatin resulting from genotoxic stress and DNA released from mitochondria, placing cGAS–STING as an important axis in autoimmunity, sterile inflammatory responses and cellular senescence. Initial models assumed that co-localization of cGAS and DNA in the cytosol defines the specificity of the pathway for non-self, but recent work revealed that cGAS is also present in the nucleus and at the plasma membrane, and such subcellular compartmentalization was linked to signalling specificity of cGAS. Further confounding the simple view of cGAS–STING signalling as a response mechanism to infectious agents, both cGAS and STING were shown to have additional functions, independent of interferon response. These involve non-catalytic roles of cGAS in regulating DNA repair and signalling via STING to NF-κB and MAPK as well as STING-mediated induction of autophagy and lysosome- dependent cell death. We have also learnt that cGAS dimers can multimerize and undergo liquid–liquid phase separation to form biomolecular condensates that could importantly regulate cGAS activation. Here, we review the molecular mechanisms and cellular functions underlying cGAS–STING activation and signalling, particularly highlighting the newly emerging diversity of this signalling pathway and discussing how the specificity towards normal, damage-induced and infection-associated DNA could be achieved

    Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010–2015)

    Full text link
    • …
    corecore