694 research outputs found
HOXA10 controls osteoblastogenesis by directly activating bone regulatory and phenotypic genes
HOXA10 is necessary for embryonic patterning of skeletal elements, but its function in bone formation beyond this early developmental stage is unknown. Here we show that HOXA10 contributes to osteogenic lineage determination through activation of Runx2 and directly regulates osteoblastic phenotypic genes. In response to bone morphogenic protein BMP2, Hoxa10 is rapidly induced and functions to activate the Runx2 transcription factor essential for bone formation. A functional element with the Hox core motif was characterized for the bone-related Runx2 P1 promoter. HOXA10 also activates other osteogenic genes, including the alkaline phosphatase, osteocalcin, and bone sialoprotein genes, and temporally associates with these target gene promoters during stages of osteoblast differentiation prior to the recruitment of RUNX2. Exogenous expression and small interfering RNA knockdown studies establish that HOXA10 mediates chromatin hyperacetylation and trimethyl histone K4 (H3K4) methylation of these genes, correlating to active transcription. HOXA10 therefore contributes to early expression of osteogenic genes through chromatin remodeling. Importantly, HOXA10 can induce osteoblast genes in Runx2 null cells, providing evidence for a direct role in mediating osteoblast differentiation independent of RUNX2. We propose that HOXA10 activates RUNX2 in mesenchymal cells, contributing to the onset of osteogenesis, and that HOXA10 subsequently supports bone formation by direct regulation of osteoblast phenotypic genes. <br/
The effect of Ku on telomere replication time is mediated by telomere length but is independent of histone tail acetylation
Peer reviewedPublisher PD
Trafficking-Deficient G572R-hERG and E637K-hERG Activate Stress and Clearance Pathways in Endoplasmic Reticulum
Background: Long QT syndrome type 2 (LQT2) is the second most common type of all long QT syndromes. It is well-known that trafficking deficient mutant human ether-a-go-go-related gene (hERG) proteins are often involved in LQT2. Cells respond to misfolded and trafficking-deficient proteins by eliciting the unfolded protein response (UPR) and Activating Transcription Factor (ATF6) has been identified as a key regulator of the mammalian UPR. In this study, we investigated the role of ER chaperone proteins (Calnexin and Calreticulin) in the processing of G572R-hERG and E637K-hERG mutant proteins. Methods: pcDNA3-WT-hERG, pcDNA3-G572R-hERG and pcDNA3-E637K-hERG plasmids were transfected into U2OS and HEK293 cells. Confocal microscopy and western blotting were used to analyze subcellular localization and protein expression. Interaction between WT or mutant hERGs and Calnexin/Calreticulin was tested by coimmunoprecipitation. To assess the role of the ubiquitin proteasome pathway in the degradation of mutant hERG proteins, transfected HEK293 cells were treated with proteasome inhibitors and their effects on the steady state protein levels of WT and mutant hERGs were examined. Conclusion: Our results showed that levels of core-glycosylated immature forms of G572R-hERG and E637K-hERG in association with Calnexin and Calreticulin were higher than that in WT-hERG. Both mutant hERG proteins could activate the UPR by upregulating levels of active ATF6. Furthermore, proteasome inhibition increased the levels of core-glycosylated immature forms of WT and mutant hERGs. In addition, interaction between mutant hERGs and Calnexin/Calreticulin wa
Wet Granular Materials
Most studies on granular physics have focused on dry granular media, with no
liquids between the grains. However, in geology and many real world
applications (e.g., food processing, pharmaceuticals, ceramics, civil
engineering, constructions, and many industrial applications), liquid is
present between the grains. This produces inter-grain cohesion and drastically
modifies the mechanical properties of the granular media (e.g., the surface
angle can be larger than 90 degrees). Here we present a review of the
mechanical properties of wet granular media, with particular emphasis on the
effect of cohesion. We also list several open problems that might motivate
future studies in this exciting but mostly unexplored field.Comment: review article, accepted for publication in Advances in Physics;
tex-style change
Decreased CD90 expression in human mesenchymal stem cells by applying mechanical stimulation
BACKGROUND: Mesenchymal stem cells (MSC) are multipotent cells which can differentiate along osteogenic, chondrogenic, and adipogenic lineages. The present study was designed to investigate the influence of mechanical force as a specific physiological stress on the differentiation of (MSC) to osteoblast-like cells. METHODS: Human MSC were cultured in osteoinductive medium with or without cyclic uniaxial mechanical stimulation (2000 ΞΌstrain, 200 cycles per day, 1 Hz). Cultured cells were analysed for expression of collagen type I, osteocalcin, osteonectin, and CD90. To evaluate the biomineral formation the content of bound calcium in the cultures was determined. RESULTS: After 14 days in culture immunfluorescence staining revealed enhancement of collagen type I and osteonectin expression in response to mechanical stimulation. In contrast, mechanically stimulated cultures stained negative for CD90. In stimulated and unstimulated cultures an increase in the calcium content over time was observed. After 21 days in culture the calcium content in mechanical stimulated cultures was significantly higher compared to unstimulated control cultures. CONCLUSION: These results demonstrate the influence of mechanical force on the differentiation of human MSC into osteoblast-like cells in vitro. While significant enhancement of the biomineral formation by mechanical stimulation is not detected before 21 days, effects on the extracellular matrix became already obvious after 14 days. The decrease of CD90 expression in mechanically stimulated cultures compared to unstimulated control cultures suggests that CD90 is only transiently expressed expression during the differentiation of MSC to osteoblast-like cells in culture
TIEG1/KLF10 Modulates Runx2 Expression and Activity in Osteoblasts
Deletion of TIEG1/KLF10 in mice results in a gender specific osteopenic skeletal phenotype with significant defects in both cortical and trabecular bone, which are observed only in female animals. Calvarial osteoblasts isolated from TIEG1 knockout (KO) mice display reduced expression levels of multiple bone related genes, including Runx2, and exhibit significant delays in their mineralization rates relative to wildtype controls. These data suggest that TIEG1 plays an important role in regulating Runx2 expression in bone and that decreased Runx2 expression in TIEG1 KO mice is in part responsible for the observed osteopenic phenotype. In this manuscript, data is presented demonstrating that over-expression of TIEG1 results in increased expression of Runx2 while repression of TIEG1 results in suppression of Runx2. Transient transfection and chromatin immunoprecipitation assays reveal that TIEG1 directly binds to and activates the Runx2 promoter. The zinc finger containing domain of TIEG1 is necessary for this regulation supporting that activation occurs through direct DNA binding. A role for the ubiquitin/proteasome pathway in fine tuning the regulation of Runx2 expression by TIEG1 is also implicated in this study. Additionally, the regulation of Runx2 expression by cytokines such as TGFΞ²1 and BMP2 is shown to be inhibited in the absence of TIEG1. Co-immunoprecipitation and co-localization assays indicate that TIEG1 protein associates with Runx2 protein resulting in co-activation of Runx2 transcriptional activity. Lastly, Runx2 adenoviral infection of TIEG1 KO calvarial osteoblasts leads to increased expression of Runx2 and enhancement of their ability to differentiate and mineralize in culture. Taken together, these data implicate an important role for TIEG1 in regulating the expression and activity of Runx2 in osteoblasts and suggest that decreased expression of Runx2 in TIEG1 KO mice contributes to the observed osteopenic bone phenotype
A Polymorphism in a Gene Encoding Perilipin 4 Is Associated with Height but not with Bone Measures in Individuals from the Framingham Osteoporosis Study
There is increasing interest in identifying new pathways and candidate genes that confer susceptibility to osteoporosis. There is evidence that adipogenesis and osteogenesis may be related, including a common bone marrow progenitor cell for both adipocytes and osteoblasts. Perilipin 1 (PLIN1) and Perilipin 4 (PLIN4) are members of the PATS family of genes and are involved in lipolysis of intracellular lipid deposits. A previous study reported gender-specific associations between one polymorphism of PLIN1 and bone mineral density (BMD) in a Japanese population. We hypothesized that polymorphisms in PLIN1 and PLIN4 would be associated with bone measures in adult Caucasian participants of the Framingham Osteoporosis Study (FOS). We genotyped 1,206 male and 1,445 female participants of the FOS for four single-nucleotide polymorphism (SNPs) in PLIN1 and seven SNPs in PLIN4 and tested for associations with measures of BMD, bone ultrasound, hip geometry, and height. We found several gender-specific significant associations with the measured traits. The association of PLIN4 SNP rs8887, G>A with height in females trended toward significance after simulation testing (adjusted P = 0.07) and remained significant after simulation testing in the combined-sex model (adjusted P = 0.033). In a large study sample of men and women, we found a significant association between one SNP in PLIN4 and height but not with bone traits, suggesting that PATS family genes are not important in the regulation of bone. Identification of genes that influence human height may lead to a better understanding of the processes involved in growth and development
Polar vortex formation in giant-planet atmospheres due to moist convection
A strong cyclonic vortex has been observed on each of Saturnβs poles, coincident with a local maximum in observed tropospheric temperature. Neptune also exhibits a relatively warm, although much more transient, region on its south pole. Whether similar features exist on Jupiter will be resolved by the 2016 Juno mission. Energetic, small-scale storm-like features that originate from the water-cloud level or lower have been observed on each of the giant planets and attributed to moist convection, suggesting that these storms play a significant role in global heat transfer from the hot interior to space. Nevertheless, the creation and maintenance of Saturnβs polar vortices, and their presence or absence on the other giant planets, are not understood. Here we use simulations with a shallow-water model to show that storm generation, driven by moist convection, can create a strong polar cyclone throughout the depth of a planetβs troposphere. We find that the type of shallow polar flow that occurs on a giant planet can be described by the size ratio of small eddies to the planetary radius and the energy density of its atmosphere due to latent heating from moist convection. We suggest that the observed difference in these parameters between Saturn and Jupiter may preclude a Jovian polar cyclone.National Science Foundation (U.S.). Graduate Research FellowshipNational Science Foundation (U.S.) (ATM-0850639)National Science Foundation (U.S.) (AGS-1032244)National Science Foundation (U.S.) (AGS-1136480)United States. Office of Naval Research (N00014-14-1-0062
- β¦