47 research outputs found

    Parental alcohol use and risk of behavioral and emotional problems in offspring

    Get PDF
    Objective The majority of studies that have examined parental alcohol use and offspring outcomes have either focused on exposure in the antenatal period or from clinical populations. This study sought to examine proximal and distal associations between parental alcohol use and offspring conduct problems and depressive symptoms in a population birth cohort. Methods We used prospective data from a large UK based population cohort (ALSPAC) to investigate the association between parental alcohol use, measured in units, (assessed at ages 4 and 12 years) with childhood conduct trajectories, (assessed on six occasions from 4 to 13.5 years, n = 6,927), and adolescent depressive symptoms (assessed on four occasions from ~13 to ~18 years, n = 5,539). Heavy drinking was defined as ≥21 units per week in mothers and partners who drank 4+ units daily. Results We found little evidence to support a dose response association between parental alcohol use and offspring outcomes. For example, we found insufficient evidence to support an association between maternal alcohol use at age 4 years and childhood conduct problems (childhood limited: OR = 1.00, 95% CI = .99, 1.01; adolescent onset: OR = 0.99, 95% CI = .98, 1.00; and early-onset persistent: OR = 0.99, 95% CI = .98, 1.00) per 1-unit change in maternal alcohol use compared to those with low levels of conduct problems. We also found insufficient evidence to support an association between maternal alcohol use at age 4 years and adolescent depressive symptoms (intercept: b = .001, 95% CI = -.01, .01, and slope: b = .003, 95% CI = -.03, .03) per 1-unit change in maternal alcohol use. Results remained consistent across amount of alcohol consumed (i.e., number of alcohol units or heavy alcohol use), parent (maternal self-reports or maternal reports of partner’s alcohol use), and timing of alcohol use (assessed at age 4 or age 12 years). Conclusions There is no support for an association between parental alcohol use during childhood and conduct and emotional problems during childhood or adolescence

    A major genetic locus in <i>Trypanosoma brucei</i> is a determinant of host pathology

    Get PDF
    The progression and variation of pathology during infections can be due to components from both host or pathogen, and/or the interaction between them. The influence of host genetic variation on disease pathology during infections with trypanosomes has been well studied in recent years, but the role of parasite genetic variation has not been extensively studied. We have shown that there is parasite strain-specific variation in the level of splenomegaly and hepatomegaly in infected mice and used a forward genetic approach to identify the parasite loci that determine this variation. This approach allowed us to dissect and identify the parasite loci that determine the complex phenotypes induced by infection. Using the available trypanosome genetic map, a major quantitative trait locus (QTL) was identified on T. brucei chromosome 3 (LOD = 7.2) that accounted for approximately two thirds of the variance observed in each of two correlated phenotypes, splenomegaly and hepatomegaly, in the infected mice (named &lt;i&gt;TbOrg1&lt;/i&gt;). In addition, a second locus was identified that contributed to splenomegaly, hepatomegaly and reticulocytosis (&lt;i&gt;TbOrg2&lt;/i&gt;). This is the first use of quantitative trait locus mapping in a diploid protozoan and shows that there are trypanosome genes that directly contribute to the progression of pathology during infections and, therefore, that parasite genetic variation can be a critical factor in disease outcome. The identification of parasite loci is a first step towards identifying the genes that are responsible for these important traits and shows the power of genetic analysis as a tool for dissecting complex quantitative phenotypic traits

    Population genetics of trypanosoma brucei rhodesiense: clonality and diversity within and between foci

    Get PDF
    African trypanosomes are unusual among pathogenic protozoa in that they can undergo their complete morphological life cycle in the tsetse fly vector with mating as a non-obligatory part of this development. Trypanosoma brucei rhodesiense, which infects humans and livestock in East and Southern Africa, has classically been described as a host-range variant of the non-human infective Trypanosoma brucei that occurs as stable clonal lineages. We have examined T. b. rhodesiense populations from East (Uganda) and Southern (Malawi) Africa using a panel of microsatellite markers, incorporating both spatial and temporal analyses. Our data demonstrate that Ugandan T. b. rhodesiense existed as clonal populations, with a small number of highly related genotypes and substantial linkage disequilibrium between pairs of loci. However, these populations were not stable as the dominant genotypes changed and the genetic diversity also reduced over time. Thus these populations do not conform to one of the criteria for strict clonality, namely stability of predominant genotypes over time, and our results show that, in a period in the mid 1990s, the previously predominant genotypes were not detected but were replaced by a novel clonal population with limited genetic relationship to the original population present between 1970 and 1990. In contrast, the Malawi T. b. rhodesiense population demonstrated significantly greater diversity and evidence for frequent genetic exchange. Therefore, the population genetics of T. b. rhodesiense is more complex than previously described. This has important implications for the spread of the single copy T. b. rhodesiense gene that allows human infectivity, and therefore the epidemiology of the human disease, as well as suggesting that these parasites represent an important organism to study the influence of optional recombination upon population genetic dynamics

    Discovery of mating in the major African livestock pathogen Trypanosoma congolense

    Get PDF
    The protozoan parasite, Trypanosoma congolense, is one of the most economically important pathogens of livestock in Africa and, through its impact on cattle health and productivity, has a significant effect on human health and well being. Despite the importance of this parasite our knowledge of some of the fundamental biological processes is limited. For example, it is unknown whether mating takes place. In this paper we have taken a population genetics based approach to address this question. The availability of genome sequence of the parasite allowed us to identify polymorphic microsatellite markers, which were used to genotype T. congolense isolates from livestock in a discrete geographical area of The Gambia. The data showed a high level of diversity with a large number of distinct genotypes, but a deficit in heterozygotes. Further analysis identified cryptic genetic subdivision into four sub-populations. In one of these, parasite genotypic diversity could only be explained by the occurrence of frequent mating in T. congolense. These data are completely inconsistent with previous suggestions that the parasite expands asexually in the absence of mating. The discovery of mating in this species of trypanosome has significant consequences for the spread of critical traits, such as drug resistance, as well as for fundamental aspects of the biology and epidemiology of this neglected but economically important pathogen

    Early childhood epilepsies:epidemiology, classification, aetiology, and socio-economic determinants

    Get PDF
    Epilepsies of early childhood are frequently resistant to therapy and often associated with cognitive and behavioural comorbidity. Aetiology focused precision medicine, notably gene-based therapies, may prevent seizures and comorbidities. Epidemiological data utilizing modern diagnostic techniques including whole genome sequencing and neuroimaging can inform diagnostic strategies and therapeutic trials. We present a 3-year, multicentre prospective cohort study, involving all children under 3 years of age in Scotland presenting with epilepsies. We used two independent sources for case identification: clinical reporting and EEG record review. Capture-recapture methodology was then used to improve the accuracy of incidence estimates. Socio-demographic and clinical details were obtained at presentation, and 24 months later. Children were extensively investigated for aetiology. Whole genome sequencing was offered for all patients with drug-resistant epilepsy for whom no aetiology could yet be identified. Multivariate logistic regression modelling was used to determine associations between clinical features, aetiology, and outcome. Three hundred and ninety children were recruited over 3 years. The adjusted incidence of epilepsies presenting in the first 3 years of life was 239 per 100 000 live births [95% confidence interval (CI) 216–263]. There was a socio-economic gradient to incidence, with a significantly higher incidence in the most deprived quintile (301 per 100 000 live births, 95% CI 251–357) compared with the least deprived quintile (182 per 100 000 live births, 95% CI 139–233), χ2 odds ratio = 1.7 (95% CI 1.3–2.2). The relationship between deprivation and incidence was only observed in the group without identified aetiology, suggesting that populations living in higher deprivation areas have greater multifactorial risk for epilepsy. Aetiology was determined in 54% of children, and epilepsy syndrome was classified in 54%. Thirty-one per cent had an identified genetic cause for their epilepsy. We present novel data on the aetiological spectrum of the most commonly presenting epilepsies of early childhood. Twenty-four months after presentation, 36% of children had drug-resistant epilepsy (DRE), and 49% had global developmental delay (GDD). Identification of an aetiology was the strongest determinant of both DRE and GDD. Aetiology was determined in 82% of those with DRE, and 75% of those with GDD. In young children with epilepsy, genetic testing should be prioritized as it has the highest yield of any investigation and is most likely to inform precision therapy and prognosis. Epilepsies in early childhood are 30% more common than previously reported. Epilepsies of undetermined aetiology present more frequently in deprived communities. This likely reflects increased multifactorial risk within these populations

    Clinical Practice Recommendations on Genetic Testing of CYP2C9 and VKORC1 Variants in Warfarin Therapy

    Get PDF
    Objective: To systematically review evidence on genetic variants influencing outcomes during warfarin therapy and provide practice recommendations addressing the key questions: (1) Should genetic testing be performed in patients with an indication for warfarin therapy to improve achievement of stable anticoagulation and reduce adverse effects? (2) Are there subgroups of patients who may benefit more from genetic testing compared with others? (3) How should patients with an indication for warfarin therapy be managed based on their genetic test results? Methods: A systematic literature search was performed for VKORC1 and CYP2C9 and their association with warfarin therapy. Evidence was critically appraised, and clinical practice recommendations were developed based on expert group consensus. Results: Testing of VKORC1 (-1639G\u3eA), CYP2C92, and CYP2C93 should be considered for all patients, including pediatric patients, within the first 2 weeks of therapy or after a bleeding event. Testing for CYP2C95, 6, 8, or 11 and CYP4F2 (V433M) is currently not recommended. Testing should also be considered for all patients who are at increased risk of bleeding complications, who consistently show out-of-range international normalized ratios, or suffer adverse events while receiving warfarin. Genotyping results should be interpreted using a pharmacogenetic dosing algorithm to estimate the required dose. Significance: This review provides the latest update on genetic markers for warfarin therapy, clinical practice recommendations as a basis for informed decision making regarding the use of genotype-guided dosing in patients with an indication for warfarin therapy, and identifies knowledge gaps to guide future research.

    Clinical Practice Recommendations for the Management and Prevention of Cisplatin-Induced Hearing Loss Using Pharmacogenetic Markers

    Get PDF
    Currently no pharmacogenomics-based criteria exist to guide clinicians in identifying individuals who are at risk of hearing loss from cisplatin-based chemotherapy. This review summarizes findings from pharmacogenomic studies that report genetic polymorphisms associated with cisplatin-induced hearing loss and aims to (1) provide up-to-date information on new developments in the field, (2) provide recommendations for the use of pharmacogenetic testing in the prevention, assessment, and management of cisplatin-induced hearing loss in children and adults, and (3) identify knowledge gaps to direct and prioritize future research. These practice recommendations for pharmacogenetic testing in the context of cisplatin-induced hearing loss reflect a review and evaluation of recent literature, and are designed to assist clinicians in providing optimal clinical care for patients receiving cisplatin-based chemotherapy

    Complications of intravesical bacillus calmette-guérin

    No full text
    Intravesical Bacillus Calmette-Guérin (BCG) is an important treatment for the management of non-muscle invasive bladder cancer because of its proven efficacy and favourable safety profile. The most common complications associated with BCG treatment are relatively minor. They include urinary frequency, cystitis, fever, and hematuria. Although serious complications are rare, patients can develop severe, life-threatening sepsis with disseminated mycobacterial infection. We report a rare case of periurethral diverticulum formation after intravesical BCG and review the literature on the potential complications of this treatment modality
    corecore