1,701 research outputs found

    Star formation and chemical evolution in SPH simulations: a statistical approach

    Get PDF
    In Smoothed Particles Hydrodynamics (SPH) codes with a large number of particles, star formation as well as gas and metal restitution from dying stars can be treated statistically. This approach allows to include detailed chemical evolution and gas re-ejection with minor computational effort. Here we report on a new statistical algorithm for star formation and chemical evolution, especially conceived for SPH simulations with large numbers of particles, and for parallel SPH codes. For the sake of illustration, we present also two astrophysical simulations obtained with this algorithm, implemented into the Tree-SPH code by Lia & Carraro (2000). In the first one, we follow the formation of an individual disc-like galaxy, predict the final structure and metallicity evolution, and test resolution effects. In the second one we simulate the formation and evolution of a cluster of galaxies, to demonstrate the capabilities of the algorithm in investigating the chemo-dynamical evolution of galaxies and of the intergalactic medium in a cosmological context.Comment: 17 pages, 20 figures, accepted for publication on MNRA

    A Parallel Tree-SPH code for Galaxy Formation

    Get PDF
    We describe a new implementation of a parallel Tree-SPH code with the aim to simulate Galaxy Formation and Evolution. The code has been parallelized using SHMEM, a Cray proprietary library to handle communications between the 256 processors of the Silicon Graphics T3E massively parallel supercomputer hosted by the Cineca Supercomputing Center (Bologna, Italy). The code combines the Smoothed Particle Hydrodynamics (SPH) method to solve hydro-dynamical equations with the popular Barnes and Hut (1986) tree-code to perform gravity calculation with a NlogN scaling, and it is based on the scalar Tree-SPH code developed by Carraro et al(1998)[MNRAS 297, 1021]. Parallelization is achieved distributing particles along processors according to a work-load criterion. Benchmarks, in terms of load-balance and scalability, of the code are analyzed and critically discussed against the adiabatic collapse of an isothermal gas sphere test using 20,000 particles on 8 processors. The code results balanced at more that 95% level. Increasing the number of processors, the load-balance slightly worsens. The deviation from perfect scalability at increasing number of processors is almost negligible up to 32 processors. Finally we present a simulation of the formation of an X-ray galaxy cluster in a flat cold dark matter cosmology, using 200,000 particles and 32 processors, and compare our results with Evrard (1988) P3M-SPH simulations. Additionaly we have incorporated radiative cooling, star formation, feed-back from SNae of type II and Ia, stellar winds and UV flux from massive stars, and an algorithm to follow the chemical enrichment of the inter-stellar medium. Simulations with some of these ingredients are also presented.Comment: 19 pages, 14 figures, accepted for publication in MNRA

    Evolution of Network Architecture in a Granular Material Under Compression

    Full text link
    As a granular material is compressed, the particles and forces within the system arrange to form complex and heterogeneous collective structures. Force chains are a prime example of such structures, and are thought to constrain bulk properties such as mechanical stability and acoustic transmission. However, capturing and characterizing the evolving nature of the intrinsic inhomogeneity and mesoscale architecture of granular systems can be challenging. A growing body of work has shown that graph theoretic approaches may provide a useful foundation for tackling these problems. Here, we extend the current approaches by utilizing multilayer networks as a framework for directly quantifying the progression of mesoscale architecture in a compressed granular system. We examine a quasi-two-dimensional aggregate of photoelastic disks, subject to biaxial compressions through a series of small, quasistatic steps. Treating particles as network nodes and interparticle forces as network edges, we construct a multilayer network for the system by linking together the series of static force networks that exist at each strain step. We then extract the inherent mesoscale structure from the system by using a generalization of community detection methods to multilayer networks, and we define quantitative measures to characterize the changes in this structure throughout the compression process. We separately consider the network of normal and tangential forces, and find that they display a different progression throughout compression. To test the sensitivity of the network model to particle properties, we examine whether the method can distinguish a subsystem of low-friction particles within a bath of higher-friction particles. We find that this can be achieved by considering the network of tangential forces, and that the community structure is better able to separate the subsystem than a purely local measure of interparticle forces alone. The results discussed throughout this study suggest that these network science techniques may provide a direct way to compare and classify data from systems under different external conditions or with different physical makeup

    The first soft-shelled turtle from the Jehol Biota of China

    Get PDF
    A new turtle from the Early Cretaceous (Aptian) Jiufotang Formation of western Liaoning, China, Perochelys lamadongensis, gen. et sp. nov., represents the first species of soft-shelled turtle from the Jehol Biota. The new taxon is diagnosed by the combination of the following characters: nuchal bone about five times wider than long; preneural absent; reversal of the orientation in the neural series at neural V; neural series fully separates costal series; costal VIIIs reduced; plastral callosities poorly developed and poorly sculpted; postorbital bar narrow, around one-fourth of orbit diameter; jugal contacting squamosal; foramen jugulare posterius separated from fenestra postotica; neural spines weakly developed on anterior cervicals; and phalangeal formula for pes 2-3-3-4-?. High levels of homoplasy make the phylogenetic relationships of the new taxon difficult to assess, and the possibility therefore exists that Perochelys lamadongensis either represents a stem or a crown trionychid. This phylogenetic uncertainty confirms that the skeletal morphology of trionychids has remained virtually unchanged for the last 120 million years

    Novel perspectives in redox biology and pathophysiology of failing myocytes: modulation of the intramyocardial redox milieu for therapeutic interventions - A review article from the Working Group of Cardiac Cell Biology, Italian Society of Cardiology

    Get PDF
    The prevalence of heart failure (HF) is still increasing worldwide, with enormous human, social, and economic costs, in spite of huge efforts in understanding pathogeneticmechanisms and in developing effective therapies that have transformed this syndrome into a chronic disease. Myocardial redox imbalance is a hallmark of this syndrome, since excessive reactive oxygen and nitrogen species can behave as signaling molecules in the pathogenesis of hypertrophy and heart failure, leading to dysregulation of cellular calcium handling, of the contractile machinery, of myocardial energetics and metabolism, and of extracellular matrix deposition. Recently, following new interesting advances in understanding myocardial ROS and RNS signaling pathways, new promising therapeutical approaches with antioxidant properties are being developed, keeping in mind that scavenging ROS and RNS tout court is detrimental as well, since these molecules also play a role in physiological myocardial homeostasis

    Molecular characterization of larval anisakid nematodes from marine fishes of Madeira by a PCR-based approach, with evidence for a new species

    Get PDF
    One-hundred and fifteen anisakid larvae from 3 different fish hosts, Aphanopus carbo, Scomber japonicus, and Trachurus picturatus, caught in Madeiran waters, were identified by PCR-RFLP. Three distinct species were identified in A. carbo, namely Anisakis simplex sensu stricto, Anisakis pegreffii, and Anisakis ziphidarum; 5 in S. japonicus, i.e., A. simplex s.s., A. pegreffii, Anisakis physeteris, Anisakis typica, and A. ziphidarum; and 3 in T. picturatus, i.e., A. simplex s.s., A. pegreffii, and A. typica. Anisakis simplex s.s. was the most frequent species in both A. carbo and S. japonicus (54% and 23.5%, respectively). Anisakis pegreffii and A. physeteris occurred with a frequency of 20.6% in S. japonicus, whereas in T. picturatus the most frequent species was A. typica (41.9%), followed by A. simplex s.s. (32.3%). Furthermore, A. carbo and S. japonicus were infected by an apparently undescribed taxon, provisionally named Anisakis sp. A. Based on estimations of the genetic distance, this new taxon seems to be more similar to A. ziphidarum (0.0335) than to other species of the genus

    Dust in the Circumgalactic Medium of Low-Redshift Galaxies

    Full text link
    Using spectroscopically selected galaxies from the Sloan Digital Sky Survey we present a detection of reddening due to dust in the circumgalactic medium of galaxies. We detect the mean change in the colors of "standard crayons" correlated with the presence of foreground galaxies at z ~0.05 as a function of angular separation. Following Peek & Graves (2010), we create standard crayons using passively evolving galaxies corrected for Milky Way reddening and color-redshift trends, leading to a sample with as little as 2% scatter in color. We devise methods to ameliorate possible systematic effects related to the estimation of colors, and we find an excess reddening induced by foreground galaxies at a level ranging from 10 to 0.5 millimagnitudes on scales ranging from 30 kpc to 1 Mpc. We attribute this effect to a large-scale distribution of dust around galaxies similar to the findings of Menard et al. 2010. We find that circumgalactic reddening is a weak function of stellar mass over the range 6×109M⊙6 \times 10^9 M_\odot -- 6×1010M⊙6 \times 10^{10} M_\odot and note that this behavior appears to be consistent with recent results on the distribution of metals in the gas phase.Comment: Submitted to Ap
    • …
    corecore