25 research outputs found

    P2X7 receptors in satellite glial cells mediate high functional expression of P2X3 receptors in immature dorsal root ganglion neurons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purinergic P2X3 receptor (P2X3R) expressed in the dorsal root ganglion (DRG) sensory neuron and the P2X7 receptor (P2X7R) expressed in the surrounding satellite glial cell (SGC) are two major receptors participating in neuron-SGC communication in adult DRGs. Activation of P2X7Rs was found to tonically reduce the expression of P2X3Rs in DRGs, thus inhibiting the abnormal pain behaviors in adult rats. P2X receptors are also actively involved in sensory signaling in developing rodents. However, very little is known about the developmental change of P2X7Rs in DRGs and the interaction between P2X7Rs and P2X3Rs in those animals. We therefore examined the expression of P2X3Rs and P2X7Rs in postnatal rats and determined if P2X7R-P2X3R control exists in developing rats.</p> <p>Findings</p> <p>We immunostained DRGs of immature rats and found that P2X3Rs were expressed only in neurons and P2X7Rs were expressed only in SGCs. Western blot analyses indicated that P2X3R expression decreased while P2X7R expression increased with the age of rats. Electrophysiological studies showed that the number of DRG neurons responding to the stimulation of the P2XR agonist, α,β-meATP, was higher and the amplitudes of α,β-meATP-induced depolarizations were larger in immature DRG neurons. As a result, P2X3R-mediated flinching responses were much more pronounced in immature rats than those found in adult rats. When we reduced P2X7R expression with P2X7R-siRNA in postnatal and adult rats, P2X3R-mediated flinch responses were greatly enhanced in both rat populations.</p> <p>Conclusions</p> <p>These results show that the P2X7R expression increases as rats age. In addition, P2X7Rs in SGCs exert inhibitory control on the P2X3R expression and function in sensory neurons of immature rats, just as observed in adult rats. Regulation of P2X7R expression is likely an effective way to control P2X3R activity and manage pain relief in infants.</p

    Analgesic Tolerance of Opioid Agonists in Mutant Mu-Opioid Receptors Expressed in Sensory Neurons Following Intrathecal Plasmid Gene Delivery

    Get PDF
    Background: Phosphorylation sites in the C-terminus of mu-opioid receptors (MORs) are known to play critical roles in the receptor functions. Our understanding of their participation in opioid analgesia is mostly based on studies of opioid effects on mutant receptors expressed in in vitro preparations, including cell lines, isolated neurons and brain slices. The behavioral consequences of the mutation have not been fully explored due to the complexity in studies of mutant receptors in vivo. To facilitate the determination of the contribution of phosphorylation sites in MOR to opioid-induced analgesic behaviors, we expressed mutant and wild-type human MORs (hMORs) in sensory dorsal root ganglion (DRG) neurons, a major site for nociceptive (pain) signaling and determined morphine- and the full MOR agonist, DAMGO,-induced effects on heat-induced hyperalgesic behaviors and potassium current (IK) desensitization in these rats. Findings: A mutant hMOR DNA with the putative phosphorylation threonine site at position 394 replaced by an alanine (T394A), i.e., hMOR-T, or a plasmid containing wild type hMOR (as a positive control) was intrathecally delivered. The plasmid containing GFP or saline was used as the negative control. To limit the expression of exogenous DNA to neurons of DRGs, a neuron-specific promoter was included in the plasmid. Following a plasmid injection, hMOR-T or hMOR receptors were expressed in small and medium DRG neurons. Compared with saline or GFP rats, the analgesic potency of morphine was increased to a similar extent in hMOR-T and hMOR rats. Morphine induced minimum IK desensitization in both rat groups. In contrast, DAMGO increased analgesic potency and elicited IK desensitization to a significantly less extent in hMOR-T than in hMOR rats. The development and extent of acute and chronic tolerance induced by repeated morphine or DAMGO applications were not altered by the T394A mutation. Conclusions: These results indicate that phosphorylation of T394 plays a critical role in determining the potency of DAMGO-induced analgesia and IK desensitization, but has limited effect on morphine-induced responses. On the other hand, the mutation contributes minimally to both DAMGO- and morphine-induced behavioral tolerance. Furthermore, the study shows that plasmid gene delivery of mutant receptors to DRG neurons is a useful strategy to explore nociceptive behavioral consequences of the mutation

    Mechanisms underlying purinergic P2X3 receptor-mediated mechanical allodynia induced in diabetic rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetic neuropathy is a common neuropathy associated with paresthaesia and pain. The mechanisms underlying the painful conditions are not well understood. The aim of this study is to investigate the participation of purinergic P2X3 receptors in painful diabetic neuropathy.</p> <p>Results</p> <p>Diabetes was induced by an intraperitoneal injection of streptozotocin (STZ). We showed that mechanical allodynia was induced two weeks after a STZ injection and lasted for at least another seven weeks. The mechanical allodynia was significantly attenuated by peripheral administration of the P2X receptor antagonists, PPADS or TNP-ATP. DiI was subcutaneously injected into the rat hindpaw to label hindpaw-innervated dorsal root ganglion (DRG) neurons. ATP activated fast-inactivating P2X3 receptor-mediated currents in the labeled DRG neurons were studied. ATP responses in STZ-treated rats were ~2-fold larger than those in control rats. Furthermore, the expression of P2X3 receptor proteins in the plasma membrane of L4-6 DRGs of STZ rats was significantly enhanced while the total expression of P2X3 receptors remained unaltered.</p> <p>Conclusions</p> <p>These results indicate that a large enhancement of P2X3 receptor activity and an increase in the membrane expression of P2X3 receptors contribute to the development of chronic pain in STZ-induced diabetic rats and suggest a possible target for the treatment of diabetic neuropathic pain.</p

    Prostaglandin E2 potentiation of P2X3 receptor mediated currents in dorsal root ganglion neurons-5

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Prostaglandin E2 potentiation of P2X3 receptor mediated currents in dorsal root ganglion neurons"</p><p>http://www.molecularpain.com/content/3/1/22</p><p>Molecular Pain 2007;3():22-22.</p><p>Published online 10 Aug 2007</p><p>PMCID:PMC2063498.</p><p></p>β-meATP (1 nmol/50 μl) or PGE2 ((0.05 nmol/50 μl). The data were normalized with baseline responses before either injection. α,β-meATP and PGE2 applied individually resulted in a moderate decrease in the threshold [(1-meATP/Con) = 0.22 ± 0.04; (1-PGE/Con) = 0.16 ± 0.03, n = 3)]. However, co-injection of α,β-meATP and PGE2 produced a much larger decrease in the threshold [1-(meATP+PGE)/Con = 0.65 ± 0.07, n = 3] than adding the threshold reduction produced by α,β-meATP and by PGE2. H89 (0.5 nmol/50 μl) reversed the enhanced allodynia produced by PGE2. (B) Thermal hyperalgesia. α,β-meATP and PGE2, applied separately, produced a small reduction in the paw withdrawal latency [(1-meATP/Con) = 0.08 ± 0.04; (1-PGE/Con) = 0.18 ± 0.02, n = 3]. Co-injection of PGE2 and α,β-meATP produced a much larger reduction in the paw withdrawal latency [(1-(meATP+PGE)/Con = 0.54 ± 0.04, n = 3]. H89 blocked the enhancing effect of PGE2. (* P < 0.05, Two-way ANOVA)

    Prostaglandin E2 potentiation of P2X3 receptor mediated currents in dorsal root ganglion neurons-1

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Prostaglandin E2 potentiation of P2X3 receptor mediated currents in dorsal root ganglion neurons"</p><p>http://www.molecularpain.com/content/3/1/22</p><p>Molecular Pain 2007;3():22-22.</p><p>Published online 10 Aug 2007</p><p>PMCID:PMC2063498.</p><p></p
    corecore