1,741 research outputs found

    Bis(μ-3-hydroxy­benzoato-κ3 O,O′:O)bis­[aqua­(3-hydroxy­benzoato-κ2 O,O′)(1,10-phenanthroline-κ2 N,N′)lead(II)] monohydrate

    Get PDF
    In the centrosymmetric binuclear title complex, [Pb2(C7H5O3)4(C12H8N2)2(H2O)2]·H2O, each Pb atom is eight-coordinated in a PbO6N2 environment by two N atoms from the 1,10-phenanthroline (phen) ligand, five carboxylate O atoms from four 3-hydroxy­benzoate anions and one O atom from the coordinated water mol­ecule in a distorted bicapped trigonal-prismatic geometry. The benzoate groups coordinate each PbII atom in two different ways. Two benzoate ions behave as bidentate ligands to the Pb atom, and another benzoate ion bridges the Pb atoms, forming a binuclear structure. The dimeric units are packed via O—H⋯O hydrogen bonds and π–π inter­actions between the aromatic rings of neighboring mol­ecules, with centroid–centroid distances of 3.552 (2) and 3.641 (2) Å

    The long noncoding RNA THRIL knockdown protects hypoxia-induced injuries of H9C2 cells through regulating miR-99a

    Get PDF
    Background: Myocardial infarction (MI) is a leading cause of disease with high morbidity and mortality worldwide. Recent studies have revealed that long non-coding RNAs (lncRNAs) are involved inheart disease pathogenesis. This study aimed to investigate the effect and the molecular basis of THRIL on hypoxia-injured H9C2 cells. Methods: THRIL, miR-99a and Brahma-related gene 1 (Brg1) expressions in H9C2 cells were altered by transient transfections. The cells were subjected to hypoxia for 4 h, and then the levels of THRIL, miR-99a and Brg1 were investigated. Cell viability, migration and invasion, and apoptotic cells were respectively measured by trypan blue exclusion assay, transwell migration assay and flow cytometry assay. Dual luciferase reporter assay was conducted to verify the interaction between miR-99a and THRIL. Furthermore, levels of apoptosis-, PI3K/AKT and mTOR pathways-related factors were measured by western blotting. Results: Hypoxia induced an increase of THRIL but a reduction of miR-99a and Brg1. THRIL inhibition significantly attenuated hypoxia-induced cell injuries, as increased cell viability, migration and invasion, and decreased cell apoptosis. THRIL negatively regulated miR-99a expression through sponging with miR-99a binding site, and miR-99a inhibition abolished the protective effects of THRIL knockdown against hypoxia-induced injury in H9C2 cells. Furthermore, miR-99a positively regulated the expression of Brg1. Brg1 inhibition promoted hypoxia-induced cell injuries, while Brg1 overexpression alleviated hypoxia-induced cell injuries. Moreover, Brg1 overexpression activated PI3K/AKT and mTOR pathways. Conclusions: This study demonstrated that THRIL inhibition represented a protective effect againsthypoxia-induced injuries in H9C2 cells by up-regulating miR-99a expression

    Competition between Chain Extension and Crosslinking in Polyamide 1012 during High Temperature Thermal Treatments as Revealed by SSA Fractionation

    Get PDF
    Unformatted post-print version of the accepted articleSelf-nucleation and annealing (SSA) is an efficient way to thermally fractionate semi-crystalline polymers. The thermal fractions produced by SSA have distinct melting points that correspond to different average lamellar thickness. In this research, SSA was adopted to investigate the in-situ evolution of lamellar thickness of polyamide 1012 (PA1012), which was affected by high temperature thermal treatments. SSA successfully fractionated PA1012 into 4 thermal fractions with different average lamellar thicknesses. The integrated area of the first or second SSA fraction against the total endothermic integrated area was plotted as a function of thermal treatment time to study the kinetics of lamellar thickness changes. Two opposing structural effects, chain growth and crosslinking, occurred during the applied thermal treatment (which consisted in thermally treating the material by holding it isothermally at temperatures in the range of 140-250 ºC) and they were detected as a function of time by SSA, rheology and dissolution behavior. The structural changes increased the viscosity and Tg and decreased the overall crystallization rate. Based on the construction of a master curve of “time-temperature superposition” at a reference temperature (T0) of 190 oC, the mechanism for lamellar thickness evolution was divided into three stages: (a) Stage I: Initially, PA1012 end groups reacted rapidly with active sites to generate chemically crosslinked structures. (b) Stage II: As the number of end groups rapidly increased, amidation reactions between carboxylic end groups and amine end groups resulted in linear chain growth. Linear chain growth and crosslinking occurred simultaneously, and there was no change in lamellar thickness or its distribution. (c) Stage III: Eventually, an increasing number of end groups was formed in the system, most of which led to linear chain growth via chain end-group reactions. These structural changes during the applied thermal treatments enhanced the mechanical properties and the heat resistance of PA1012. This work provides specific guidance for improving the toughness, strength and heat resistance of polyamide materials.We acknowledge generous financial support from the following grants: National Key R&D Program of China (2017YFB0307600) and STS project of Chinese Academy of Sciences (KFJ-STS-QYZX-113). A.J.M. acknowledges funding from the Basque Government through grant IT1309-19. We would like to thank the financial support provided by the BIODEST project; this project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 778092

    FractalAD: A simple industrial anomaly detection method using fractal anomaly generation and backbone knowledge distillation

    Full text link
    Although industrial anomaly detection (AD) technology has made significant progress in recent years, generating realistic anomalies and learning priors of normal remain challenging tasks. In this study, we propose an end-to-end industrial anomaly detection method called FractalAD. Training samples are obtained by synthesizing fractal images and patches from normal samples. This fractal anomaly generation method is designed to sample the full morphology of anomalies. Moreover, we designed a backbone knowledge distillation structure to extract prior knowledge contained in normal samples. The differences between a teacher and a student model are converted into anomaly attention using a cosine similarity attention module. The proposed method enables an end-to-end semantic segmentation network to be used for anomaly detection without adding any trainable parameters to the backbone and segmentation head, and has obvious advantages over other methods in training and inference speed.. The results of ablation studies confirmed the effectiveness of fractal anomaly generation and backbone knowledge distillation. The results of performance experiments showed that FractalAD achieved competitive results on the MVTec AD dataset and MVTec 3D-AD dataset compared with other state-of-the-art anomaly detection methods.Comment: 12 pages, 5 figure

    A “Double-Multi” Model for Electromigration of Lithiums and Chlorides in ASR Affected Concrete

    Get PDF
    Existing reinforced concrete structures experience severe durability degradation when subjected to alkali– silica reaction (ASR) and chloride attack. A special electrochemical rehabilitation treatment, containing lithium compound anolyte, has been developed to drive lithium ions into concrete as well as remove chlorides simultaneously, for mitigating both the ASR-induced cracks and the chloride-induced corrosion. Good performance of introduced lithiums in controlling ASR-induced expansion has already been proved. Unfortunately, the migration mechanism of lithium in concrete under an external electric field is seldom investigated in existing literature. In this study, with help of the “double-multi” model, the efficiency of impregnation of lithium ions and simultaneously the removal of chloride ions through a specific electrochemical treatment are numerically evaluated, which results into the distribution profiles of all typical ionic species. The heterogeneous concrete model examines the aggregate effect, especially on the interaction with lithiums which are supposed to mitigate ASR. The ionic interaction between different species and the electrochemical reaction at electrodes are also considered. Through a relative thorough modelling of multi-phase and multi-species, a systemic parametric analysis based on a series of significant factors during electrochemical treatment (e.g., current density, treatment time, temperature, cathode position and concentration of lithium solution) reveals some important tendencies of ionic electromigration in concrete, which are supposed to guide the field application

    1-Methyl­hydrazinium picrate

    Get PDF
    In the title salt, CH7N2 +·C6H2N3O7 −, the dihedral angles between the three nitro groups and the plane of the benzene ring are 22.4 (2), 35.3 (2) and 2.8 (2)°. In the crystal, the components are linked by N—H⋯O and N—H⋯N hydrogen bonds into a two-dimensional network parallel to (10)

    Are CD4+CD25-Foxp3+ cells in untreated new-onset lupus patients regulatory T cells?

    Get PDF
    Introduction: Our previous study has reported that, in patients with untreated new-onset lupus (UNOL), there was an abnormal increase in the number of CD4CD25Foxp3T cells that correlated with disease activity and significantly decreased after treatment. However, little is known about the nature of this cell entity. The aim of this study was to explore the nature of abnormally increased CD4CD25Foxp3T cells in UNOL patients.Methods: The expressions of surface (CD4, CD25, CD127, chemokine receptor 4 [CCR4], glucocorticoid-induced tumor necrosis factor receptor [GITR], and cytotoxic T lymphocyte-associated antigen 4 [CTLA-4]) and intracellular (Foxp3) molecules as well as cytokine synthesis of peripheral blood mononuclear cells from 22 UNOL patients were analyzed by flow cytometry. The proliferative and suppressive capacities of different T-cell subgroups from UNOL patients were also assessed.Results: In UNOL patients, the percentages of CD127in CD25, CD25, and CD25subpopulations of CD4Foxp3T cells were 93.79% ± 3.48%, 93.66% ± 2.31%, and 91.98% ± 2.14%, respectively (P > 0.05), whereas the expressions of Foxp3 showed significant differences in CD25(91.38% ± 2.57%), CD25(71.89% ± 3.31%), and CD25(9.02% ± 2.21%) subpopulations of CD4CD127T cells (P < 0.01). The expressions of surface CCR4, GITR, and CTLA-4 on CD4CD25Foxp3T cells were significantly less than CD4CD25Foxp3T cells (P < 0.05). Moreover, unlike CD4CD25Foxp3T cells, CD4CD25Foxp3T cells also synthesized interferon-gamma, interleukin (IL)-4, IL-2, and IL-17 (P < 0.05), though less than CD4CD25Foxp3T cells. The suppressive capacity was most prominent in CD4CD25CD127, followed by CD4CD25CD127. CD4CD25CD127T cells showed the least suppressive capacity, which was similar to the effector T cells.Conclusions: CD4CD25Foxp3T cells in UNOL patients are different from regulatory T cells, both phenotypically and functionally. CD127 is not an appropriate surface marker for intracellular Foxp3 in CD4CD25T cells
    corecore