8 research outputs found

    An extensive phenotypic characterization of the hTNFα transgenic mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor necrosis factor alpha (TNFα) is implicated in a wide variety of pathological and physiological processes, including chronic inflammatory conditions, coronary artery disease, diabetes, obesity, and cachexia. Transgenic mice expressing human TNFα (hTNFα) have previously been described as a model for progressive rheumatoid arthritis. In this report, we describe extensive characterization of an hTNFα transgenic mouse line.</p> <p>Results</p> <p>In addition to arthritis, these hTNFα transgenic mice demonstrated major alterations in body composition, metabolic rate, leptin levels, response to a high-fat diet, bone mineral density and content, impaired fertility and male sexual function. Many phenotypes displayed an earlier onset and a higher degree of severity in males, pointing towards a significant degree of sexual dimorphism in response to deregulated expression of TNFα.</p> <p>Conclusion</p> <p>These results highlight the potential usefulness of this transgenic model as a resource for studying the progressive effects of constitutively expressed low levels of circulating TNFα, a condition mimicking that observed in a number of human pathological conditions.</p

    Position-selected cocatalyst modification on a Z-scheme Cd0.5Zn0.5S/NiTiO3 photocatalyst for boosted H2 evolution

    No full text
    Photocatalytic water splitting by semiconductors is a promising technology to produce clean H2 fuel, but the efficiency is restrained seriously by the high overpotential of the H2-evolution reaction together with the high recombination rate of photoinduced charges. To enhance H2 production, it is highly desirable yet challenging to explore an efficient reductive cocatalyst and place it precisely on the right sites of the photocatalyst surface to work the proton reduction reaction exclusively. Herein, the metalloid NixP cocatalyst is exactly positioned on the Z-scheme Cd0.5Zn0.5S/NiTiO3 (CZS/NTO) heterostructure through a facile photodeposition strategy, which renders the cocatalyst form solely at the electron-collecting locations. It is revealed that the directional transfer of photoexcited electrons from Cd0.5Zn0.5S to NixP suppresses the quenching of charge carriers. Under visible light, the CZS/NTO hybrid loaded with the NixP cocatalyst exhibits an optimal H2 yield rate of 1103 μmol h−1 (i.e., 27.57 mmol h−1 g−1), which is about twofold of pristine CZS/NTO and comparable to the counterpart deposited with the Pt cocatalyst. Besides, the high apparent quantum yield (AQY) of 56% is reached at 400 nm. Further, the mechanisms of the cocatalyst formation and the H2 generation reaction are discussed in detail

    An extensive phenotypic characterization of the hTNFα transgenic mice-0

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "An extensive phenotypic characterization of the hTNFα transgenic mice"</p><p>http://www.biomedcentral.com/1472-6793/7/13</p><p>BMC Physiology 2007;7():13-13.</p><p>Published online 10 Dec 2007</p><p>PMCID:PMC2222242.</p><p></p>pendently increased endogenous TNFα in WT and TG mice similarly. WT (open bars) and TG mice (closed bars) were injected with the indicated doses of LPS (μg/mouse) as shown on the X-axis. (A) Human and (B) mouse TNFα levels were measured using ELISA assays. Data are presented as means ± SEM, n = 5 for each genotype and dose combination. ND – non-detectable

    An extensive phenotypic characterization of the hTNFα transgenic mice-2

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "An extensive phenotypic characterization of the hTNFα transgenic mice"</p><p>http://www.biomedcentral.com/1472-6793/7/13</p><p>BMC Physiology 2007;7():13-13.</p><p>Published online 10 Dec 2007</p><p>PMCID:PMC2222242.</p><p></p>pendently increased endogenous TNFα in WT and TG mice similarly. WT (open bars) and TG mice (closed bars) were injected with the indicated doses of LPS (μg/mouse) as shown on the X-axis. (A) Human and (B) mouse TNFα levels were measured using ELISA assays. Data are presented as means ± SEM, n = 5 for each genotype and dose combination. ND – non-detectable
    corecore