3,841 research outputs found
Look, Listen and Learn - A Multimodal LSTM for Speaker Identification
Speaker identification refers to the task of localizing the face of a person
who has the same identity as the ongoing voice in a video. This task not only
requires collective perception over both visual and auditory signals, the
robustness to handle severe quality degradations and unconstrained content
variations are also indispensable. In this paper, we describe a novel
multimodal Long Short-Term Memory (LSTM) architecture which seamlessly unifies
both visual and auditory modalities from the beginning of each sequence input.
The key idea is to extend the conventional LSTM by not only sharing weights
across time steps, but also sharing weights across modalities. We show that
modeling the temporal dependency across face and voice can significantly
improve the robustness to content quality degradations and variations. We also
found that our multimodal LSTM is robustness to distractors, namely the
non-speaking identities. We applied our multimodal LSTM to The Big Bang Theory
dataset and showed that our system outperforms the state-of-the-art systems in
speaker identification with lower false alarm rate and higher recognition
accuracy.Comment: The 30th AAAI Conference on Artificial Intelligence (AAAI-16
System Design of Internet-of-Things for Residential Smart Grid
Internet-of-Things (IoTs) envisions to integrate, coordinate, communicate,
and collaborate real-world objects in order to perform daily tasks in a more
intelligent and efficient manner. To comprehend this vision, this paper studies
the design of a large scale IoT system for smart grid application, which
constitutes a large number of home users and has the requirement of fast
response time. In particular, we focus on the messaging protocol of a universal
IoT home gateway, where our cloud enabled system consists of a backend server,
unified home gateway (UHG) at the end users, and user interface for mobile
devices. We discuss the features of such IoT system to support a large scale
deployment with a UHG and real-time residential smart grid applications. Based
on the requirements, we design an IoT system using the XMPP protocol, and
implemented in a testbed for energy management applications. To show the
effectiveness of the designed testbed, we present some results using the
proposed IoT architecture.Comment: 10 pages, 6 figures, journal pape
(2-Methoxy-1,10-phenanthroline-κ2 N,N′)bis(thiocyanato-κN)zinc(II)
In the title complex, [Zn(NCS)2(C13H10N2O)], the ZnII ion is in a distorted tetrahdral ZnN2Cl2 coordination environment. In the crystal structure, there is a weak π–π stacking interaction between adjacent 1,10-phenanthroline rings, with a pyridine centroid–centroid distance of 3.6620 (15) Å
Dichlorido(2-methoxy-1,10-phenanthroline-κ2 N,N′)zinc(II)
There are two molecules of the title complex, [ZnCl2(C13H10N2O)], in the asymmetric unit. Each Zn atom assumes a distorted tetrahedral ZnN2Cl2 coordination geometry. There are weak π–π stacking interactions between adjacent 1,10-phenanthroline rings [centroid–centroid distances = 3.6356 (18) and 3.6353 (18) Å]
Bis(2-dimethylamino-1,10-phenanthroline-κ2 N,N′)bis(thiocyanato-κN)nickel(II) methanol disolvate
In the title complex, [Ni(NCS)2(C14H13N3)2]·2CH3OH, the NiII atom lies on a crystallographic twofold rotation axis and is in a slightly distorted octahedral NiN6 coordination environment. The crystal structure is stabilized by a combination of weak π–π stacking interactions between symmetry-related 1,10-phenanthroline ligands [centroi–centroid distance between benzene rings = 3.5936 (18) Å] and weak O—H⋯S, C—H⋯O and C—H⋯S hydrogen bonds between methanol and complex molecules
Stability analysis of token-based wireless networked control systems under deception attacks
Currently, cyber-security has attracted a lot of attention, in particular in wireless industrial control networks (WICNs). In this paper, the stability of wireless networked control systems (WNCSs) under deception, attacks is studied with a token-based protocol applied to the data link layer (DLL) of WICNS. Since deception attacks cause the stability problem of WNCSs by changing the data transmitted over a wireless network, it is important to detect deception attacks, discard the injected false data and compensate for the missing data (i.e., the discarded original data with the injected false data). The main contributions of this paper are: 1) With respect to the character of the token-based protocol, a switched system model is developed. Different from the traditional switched system where the number of subsystems is fixed, in our new model this number will be changed under deception attacks. 2) For this model, a new Kalman filter (KF) is developed for the purpose of attack detection and the missing data reconstruction. 3) For the given linear feedback WNCSs, when the noise level is below a threshold derived in this paper, the maximum allowable duration of deception attacks is obtained to maintain the exponential stability of the system. Finally, a numerical example based on a linearized model of an inverted pendulum is provided to demonstrate the proposed design
- …