3,646 research outputs found

    Look, Listen and Learn - A Multimodal LSTM for Speaker Identification

    Full text link
    Speaker identification refers to the task of localizing the face of a person who has the same identity as the ongoing voice in a video. This task not only requires collective perception over both visual and auditory signals, the robustness to handle severe quality degradations and unconstrained content variations are also indispensable. In this paper, we describe a novel multimodal Long Short-Term Memory (LSTM) architecture which seamlessly unifies both visual and auditory modalities from the beginning of each sequence input. The key idea is to extend the conventional LSTM by not only sharing weights across time steps, but also sharing weights across modalities. We show that modeling the temporal dependency across face and voice can significantly improve the robustness to content quality degradations and variations. We also found that our multimodal LSTM is robustness to distractors, namely the non-speaking identities. We applied our multimodal LSTM to The Big Bang Theory dataset and showed that our system outperforms the state-of-the-art systems in speaker identification with lower false alarm rate and higher recognition accuracy.Comment: The 30th AAAI Conference on Artificial Intelligence (AAAI-16

    System Design of Internet-of-Things for Residential Smart Grid

    Full text link
    Internet-of-Things (IoTs) envisions to integrate, coordinate, communicate, and collaborate real-world objects in order to perform daily tasks in a more intelligent and efficient manner. To comprehend this vision, this paper studies the design of a large scale IoT system for smart grid application, which constitutes a large number of home users and has the requirement of fast response time. In particular, we focus on the messaging protocol of a universal IoT home gateway, where our cloud enabled system consists of a backend server, unified home gateway (UHG) at the end users, and user interface for mobile devices. We discuss the features of such IoT system to support a large scale deployment with a UHG and real-time residential smart grid applications. Based on the requirements, we design an IoT system using the XMPP protocol, and implemented in a testbed for energy management applications. To show the effectiveness of the designed testbed, we present some results using the proposed IoT architecture.Comment: 10 pages, 6 figures, journal pape

    (2-Meth­oxy-1,10-phenanthroline-κ2 N,N′)bis­(thio­cyanato-κN)zinc(II)

    Get PDF
    In the title complex, [Zn(NCS)2(C13H10N2O)], the ZnII ion is in a distorted tetra­hdral ZnN2Cl2 coordination environment. In the crystal structure, there is a weak π–π stacking inter­action between adjacent 1,10-phenanthroline rings, with a pyridine centroid–centroid distance of 3.6620 (15) Å

    Bis(2-dimethylamino-1,10-phenanthroline-κ2 N,N′)bis­(thio­cyanato-κN)nickel(II) methanol disolvate

    Get PDF
    In the title complex, [Ni(NCS)2(C14H13N3)2]·2CH3OH, the NiII atom lies on a crystallographic twofold rotation axis and is in a slightly distorted octa­hedral NiN6 coordination environment. The crystal structure is stabilized by a combination of weak π–π stacking inter­actions between symmetry-related 1,10-phenanthroline ligands [centroi–centroid distance between benzene rings = 3.5936 (18) Å] and weak O—H⋯S, C—H⋯O and C—H⋯S hydrogen bonds between methanol and complex mol­ecules

    Dichlorido(2-meth­oxy-1,10-phenanthroline-κ2 N,N′)zinc(II)

    Get PDF
    There are two molecules of the title complex, [ZnCl2(C13H10N2O)], in the asymmetric unit. Each Zn atom assumes a distorted tetra­hedral ZnN2Cl2 coordination geometry. There are weak π–π stacking inter­actions between adjacent 1,10-phenanthroline rings [centroid–centroid distances = 3.6356 (18) and 3.6353 (18) Å]

    Stability analysis of token-based wireless networked control systems under deception attacks

    Get PDF
    Currently, cyber-security has attracted a lot of attention, in particular in wireless industrial control networks (WICNs). In this paper, the stability of wireless networked control systems (WNCSs) under deception, attacks is studied with a token-based protocol applied to the data link layer (DLL) of WICNS. Since deception attacks cause the stability problem of WNCSs by changing the data transmitted over a wireless network, it is important to detect deception attacks, discard the injected false data and compensate for the missing data (i.e., the discarded original data with the injected false data). The main contributions of this paper are: 1) With respect to the character of the token-based protocol, a switched system model is developed. Different from the traditional switched system where the number of subsystems is fixed, in our new model this number will be changed under deception attacks. 2) For this model, a new Kalman filter (KF) is developed for the purpose of attack detection and the missing data reconstruction. 3) For the given linear feedback WNCSs, when the noise level is below a threshold derived in this paper, the maximum allowable duration of deception attacks is obtained to maintain the exponential stability of the system. Finally, a numerical example based on a linearized model of an inverted pendulum is provided to demonstrate the proposed design
    corecore