27,468 research outputs found

    A Dynamic Epistemic Framework for Conformant Planning

    Full text link
    In this paper, we introduce a lightweight dynamic epistemic logical framework for automated planning under initial uncertainty. We reduce plan verification and conformant planning to model checking problems of our logic. We show that the model checking problem of the iteration-free fragment is PSPACE-complete. By using two non-standard (but equivalent) semantics, we give novel model checking algorithms to the full language and the iteration-free language.Comment: In Proceedings TARK 2015, arXiv:1606.0729

    Knowledge Graph Embedding with Iterative Guidance from Soft Rules

    Full text link
    Embedding knowledge graphs (KGs) into continuous vector spaces is a focus of current research. Combining such an embedding model with logic rules has recently attracted increasing attention. Most previous attempts made a one-time injection of logic rules, ignoring the interactive nature between embedding learning and logical inference. And they focused only on hard rules, which always hold with no exception and usually require extensive manual effort to create or validate. In this paper, we propose Rule-Guided Embedding (RUGE), a novel paradigm of KG embedding with iterative guidance from soft rules. RUGE enables an embedding model to learn simultaneously from 1) labeled triples that have been directly observed in a given KG, 2) unlabeled triples whose labels are going to be predicted iteratively, and 3) soft rules with various confidence levels extracted automatically from the KG. In the learning process, RUGE iteratively queries rules to obtain soft labels for unlabeled triples, and integrates such newly labeled triples to update the embedding model. Through this iterative procedure, knowledge embodied in logic rules may be better transferred into the learned embeddings. We evaluate RUGE in link prediction on Freebase and YAGO. Experimental results show that: 1) with rule knowledge injected iteratively, RUGE achieves significant and consistent improvements over state-of-the-art baselines; and 2) despite their uncertainties, automatically extracted soft rules are highly beneficial to KG embedding, even those with moderate confidence levels. The code and data used for this paper can be obtained from https://github.com/iieir-km/RUGE.Comment: To appear in AAAI 201

    A Matrix-Analytic Solution for Randomized Load Balancing Models with Phase-Type Service Times

    Full text link
    In this paper, we provide a matrix-analytic solution for randomized load balancing models (also known as \emph{supermarket models}) with phase-type (PH) service times. Generalizing the service times to the phase-type distribution makes the analysis of the supermarket models more difficult and challenging than that of the exponential service time case which has been extensively discussed in the literature. We first describe the supermarket model as a system of differential vector equations, and provide a doubly exponential solution to the fixed point of the system of differential vector equations. Then we analyze the exponential convergence of the current location of the supermarket model to its fixed point. Finally, we present numerical examples to illustrate our approach and show its effectiveness in analyzing the randomized load balancing schemes with non-exponential service requirements.Comment: 24 page
    corecore