27,468 research outputs found
A Dynamic Epistemic Framework for Conformant Planning
In this paper, we introduce a lightweight dynamic epistemic logical framework
for automated planning under initial uncertainty. We reduce plan verification
and conformant planning to model checking problems of our logic. We show that
the model checking problem of the iteration-free fragment is PSPACE-complete.
By using two non-standard (but equivalent) semantics, we give novel model
checking algorithms to the full language and the iteration-free language.Comment: In Proceedings TARK 2015, arXiv:1606.0729
Knowledge Graph Embedding with Iterative Guidance from Soft Rules
Embedding knowledge graphs (KGs) into continuous vector spaces is a focus of
current research. Combining such an embedding model with logic rules has
recently attracted increasing attention. Most previous attempts made a one-time
injection of logic rules, ignoring the interactive nature between embedding
learning and logical inference. And they focused only on hard rules, which
always hold with no exception and usually require extensive manual effort to
create or validate. In this paper, we propose Rule-Guided Embedding (RUGE), a
novel paradigm of KG embedding with iterative guidance from soft rules. RUGE
enables an embedding model to learn simultaneously from 1) labeled triples that
have been directly observed in a given KG, 2) unlabeled triples whose labels
are going to be predicted iteratively, and 3) soft rules with various
confidence levels extracted automatically from the KG. In the learning process,
RUGE iteratively queries rules to obtain soft labels for unlabeled triples, and
integrates such newly labeled triples to update the embedding model. Through
this iterative procedure, knowledge embodied in logic rules may be better
transferred into the learned embeddings. We evaluate RUGE in link prediction on
Freebase and YAGO. Experimental results show that: 1) with rule knowledge
injected iteratively, RUGE achieves significant and consistent improvements
over state-of-the-art baselines; and 2) despite their uncertainties,
automatically extracted soft rules are highly beneficial to KG embedding, even
those with moderate confidence levels. The code and data used for this paper
can be obtained from https://github.com/iieir-km/RUGE.Comment: To appear in AAAI 201
A Matrix-Analytic Solution for Randomized Load Balancing Models with Phase-Type Service Times
In this paper, we provide a matrix-analytic solution for randomized load
balancing models (also known as \emph{supermarket models}) with phase-type (PH)
service times. Generalizing the service times to the phase-type distribution
makes the analysis of the supermarket models more difficult and challenging
than that of the exponential service time case which has been extensively
discussed in the literature. We first describe the supermarket model as a
system of differential vector equations, and provide a doubly exponential
solution to the fixed point of the system of differential vector equations.
Then we analyze the exponential convergence of the current location of the
supermarket model to its fixed point. Finally, we present numerical examples to
illustrate our approach and show its effectiveness in analyzing the randomized
load balancing schemes with non-exponential service requirements.Comment: 24 page
- …
