5,230 research outputs found

    Dynamic structure of stock communities: A comparative study between stock returns and turnover rates

    Full text link
    The detection of community structure in stock market is of theoretical and practical significance for the study of financial dynamics and portfolio risk estimation. We here study the community structures in Chinese stock markets from the aspects of both price returns and turnover rates, by using a combination of the PMFG and infomap methods based on a distance matrix. We find that a few of the largest communities are composed of certain specific industry or conceptional sectors and the correlation inside a sector is generally larger than the correlation between different sectors. In comparison with returns, the community structure for turnover rates is more complex and the sector effect is relatively weaker. The financial dynamics is further studied by analyzing the community structures over five sub-periods. Sectors like banks, real estate, health care and New Shanghai take turns to compose a few of the largest communities for both returns and turnover rates in different sub-periods. Several specific sectors appear in the communities with different rank orders for the two time series even in the same sub-period. A comparison between the evolution of prices and turnover rates of stocks from these sectors is conducted to better understand their differences. We find that stock prices only had large changes around some important events while turnover rates surged after each of these events relevant to specific sectors, which may offer a possible explanation for the complexity of stock communities for turnover rates

    Explore the Functional Connectivity between Brain Regions during a Chemistry Working Memory Task.

    Get PDF
    Previous studies have rarely examined how temporal dynamic patterns, event-related coherence, and phase-locking are related to each other. This study assessed reaction-time-sorted spectral perturbation and event-related spectral perturbation in order to examine the temporal dynamic patterns in the frontal midline (F), central parietal (CP), and occipital (O) regions during a chemistry working memory task at theta, alpha, and beta frequencies. Furthermore, the functional connectivity between F-CP, CP-O, and F-O were assessed by component event-related coherence (ERCoh) and component phase-locking (PL) at different frequency bands. In addition, this study examined whether the temporal dynamic patterns are consistent with the functional connectivity patterns across different frequencies and time courses. Component ERCoh/PL measured the interactions between different independent components decomposed from the scalp EEG, mixtures of time courses of activities arising from different brain, and artifactual sources. The results indicate that the O and CP regions' temporal dynamic patterns are similar to each other. Furthermore, pronounced component ERCoh/PL patterns were found to exist between the O and CP regions across each stimulus and probe presentation, in both theta and alpha frequencies. The consistent theta component ERCoh/PL between the F and O regions was found at the first stimulus and after probe presentation. These findings demonstrate that temporal dynamic patterns at different regions are in accordance with the functional connectivity patterns. Such coordinated and robust EEG temporal dynamics and component ERCoh/PL patterns suggest that these brain regions' neurons work together both to induce similar event-related spectral perturbation and to synchronize or desynchronize simultaneously in order to swiftly accomplish a particular goal. The possible mechanisms for such distinct component phase-locking and coherence patterns were also further discussed
    • …
    corecore