18,531 research outputs found

    Revealing Tripartite Quantum Discord with Tripartite Information Diagram

    Full text link
    A new measure based on the tripartite information diagram is proposed for identifying quantum discord in tripartite systems. The proposed measure generalizes the mutual information underlying discord from bipartite to tripartite systems, and utilizes both one-particle and two-particle projective measurements to reveal the characteristics of the tripartite quantum discord. The feasibility of the proposed measure is demonstrated by evaluating the tripartite quantum discord for systems with states close to Greenberger-Horne-Zeilinger, W, and biseparable states. In addition, the connections between tripartite quantum discord and two other quantum correlations---namely genuine tripartite entanglement and genuine tripartite Einstein-Podolsky-Rosen steering---are briefly discussed. The present study considers the case of quantum discord in tripartite systems. However, the proposed framework can be readily extended to general N-partite systems

    Weiqi games as a tree: Zipf's law of openings and beyond

    Full text link
    Weiqi is one of the most complex board games played by two persons. The placement strategies adopted by Weiqi players are often used to analog the philosophy of human wars. Contrary to the western chess, Weiqi games are less studied by academics partially because Weiqi is popular only in East Asia, especially in China, Japan and Korea. Here, we propose to construct a directed tree using a database of extensive Weiqi games and perform a quantitative analysis of the Weiqi tree. We find that the popularity distribution of Weiqi openings with a same number of moves is distributed according to a power law and the tail exponent increases with the number of moves. Intriguingly, the superposition of the popularity distributions of Weiqi openings with the number of moves no more than a given number also has a power-law tail in which the tail exponent increases with the number of moves, and the superposed distribution approaches to the Zipf law. These findings are the same as for chess and support the conjecture that the popularity distribution of board game openings follows the Zipf law with a universal exponent. We also find that the distribution of out-degrees has a power-law form, the distribution of branching ratios has a very complicated pattern, and the distribution of uniqueness scores defined by the path lengths from the root vertex to the leaf vertices exhibits a unimodal shape. Our work provides a promising direction for the study of the decision making process of Weiqi playing from the angle of directed branching tree.Comment: 6 Latex pages including 6 figure

    GRB/GW association: Long-short GRB candidates, time-lag, measuring gravitational wave velocity and testing Einstein's equivalence principle

    Full text link
    Short-duration gamma-ray bursts (SGRBs) are widely believed to be powered by the mergers of compact binaries, such as binary neutron stars or possibly neutron star-black hole binaries. Though the prospect of detecting SGRBs with gravitational wave (GW) signals by the advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)/VIRGO network is promising, no known SGRB has been found within the expected advanced LIGO/VIRGO sensitivity range for binary neutron star systems. We find, however, that the two long-short GRBs (GRB 060505 and GRB 060614) may be within the horizon of advanced GW detectors. In the upcoming era of GW astronomy, the merger origin of some long-short GRBs, as favored by the macronova signature displayed in GRB 060614, can be unambiguously tested. The model-dependent time lags between the merger and the onset of the prompt emission of the GRB are estimated. The comparison of such time lags between model predictions and the real data expected in the era of the GW astronomy would be helpful in revealing the physical processes taking place at the central engine (including the launch of the relativistic outflow, the emergence of the outflow from the dense material ejected during the merger, and the radiation of gamma rays). We also show that the speed of GWs, with or without a simultaneous test of Einstein's equivalence principle, can be directly measured to an accuracy of ∼3×10−8 cm s−1\sim 3\times 10^{-8}~{\rm cm~s^{-1}} or even better in the advanced LIGO/VIRGO era. The Astrophysical Journal, VolumeComment: 12 pages, 3 figures, published in The Astrophysical Journa
    • …
    corecore