4,621 research outputs found

    Kinetic Ballooning Mode Under Steep Gradient: High Order Eigenstates and Mode Structure Parity Transition

    Get PDF
    The existence of kinetic ballooning mode (KBM) high order (non-ground) eigenstates for tokamak plasmas with steep gradient is demonstrated via gyrokinetic electromagnetic eigenvalue solutions, which reveals that eigenmode parity transition is an intrinsic property of electromagnetic plasmas. The eigenstates with quantum number l=0l=0 for ground state and l=1,2,3…l=1,2,3\ldots for non-ground states are found to coexist and the most unstable one can be the high order states (l≠0l\neq0). The conventional KBM is the l=0l=0 state. It is shown that the l=1l=1 KBM has the same mode structure parity as the micro-tearing mode (MTM). In contrast to the MTM, the l=1l=1 KBM can be driven by pressure gradient even without collisions and electron temperature gradient. The relevance between various eigenstates of KBM under steep gradient and edge plasma physics is discussed.Comment: 6 pages, 6 figure

    SoK: Certified Robustness for Deep Neural Networks

    Full text link
    Great advances in deep neural networks (DNNs) have led to state-of-the-art performance on a wide range of tasks. However, recent studies have shown that DNNs are vulnerable to adversarial attacks, which have brought great concerns when deploying these models to safety-critical applications such as autonomous driving. Different defense approaches have been proposed against adversarial attacks, including: a) empirical defenses, which can usually be adaptively attacked again without providing robustness certification; and b) certifiably robust approaches, which consist of robustness verification providing the lower bound of robust accuracy against any attacks under certain conditions and corresponding robust training approaches. In this paper, we systematize certifiably robust approaches and related practical and theoretical implications and findings. We also provide the first comprehensive benchmark on existing robustness verification and training approaches on different datasets. In particular, we 1) provide a taxonomy for the robustness verification and training approaches, as well as summarize the methodologies for representative algorithms, 2) reveal the characteristics, strengths, limitations, and fundamental connections among these approaches, 3) discuss current research progresses, theoretical barriers, main challenges, and future directions for certifiably robust approaches for DNNs, and 4) provide an open-sourced unified platform to evaluate 20+ representative certifiably robust approaches.Comment: To appear at 2023 IEEE Symposium on Security and Privacy (SP); 14 pages for the main text; benchmark & tool website: http://sokcertifiedrobustness.github.io

    Low-mass Active Galactic Nuclei on the Fundamental Plane of Black Hole Activity

    Full text link
    It is widely known that in active galactic nuclei (AGNs) and black hole X-ray binaries (BHXBs), there is a tight correlation among their radio luminosity (LRL_R), X-ray luminosity (LXL_X) and BH mass (\mbh), the so-called `fundamental plane' (FP) of BH activity. Yet the supporting data are very limited in the \mbh regime between stellar mass (i.e., BHXBs) and 106.5^{6.5}\,\msun\ (namely, the lower bound of supermassive BHs in common AGNs). In this work, we developed a new method to measure the 1.4 GHz flux directly from the images of the VLA FIRST survey, and apply it to the type-1 low-mass AGNs in the \cite{2012ApJ...755..167D} sample. As a result, we obtained 19 new low-mass AGNs for FP research with both \mbh\ estimates (\mbh \approx 10^{5.5-6.5}\,\msun), reliable X-ray measurements, and (candidate) radio detections, tripling the number of such candidate sources in the literature.Most (if not all) of the low-mass AGNs follow the standard radio/X-ray correlation and the universal FP relation fitted with the combined dataset of BHXBs and supermassive AGNs by \citet{2009ApJ...706..404G}; the consistency in the radio/X-ray correlation slope among those accretion systems supports the picture that the accretion and ejection (jet) processes are quite similar in all accretion systems of different \mbh. In view of the FP relation, we speculate that the radio loudness R\mathcal{R} (i.e., the luminosity ratio of the jet to the accretion disk) of AGNs depends not only on Eddington ratio, but probably also on \mbh.Comment: ApJ accepte
    • …
    corecore