557 research outputs found

    Study of the P-wave charmonium state \chi_{cJ} in \psi(2S) decays

    Full text link
    The processes ψ(2S)γπ+π\psi(2S)\to \gamma \pi^+ \pi^-, γK+K\gamma K^+ K^- and γppˉ\gamma p \bar{p} have been studied using a sample of 3.7×1063.7 \times 10^6 produced ψ(2S)\psi(2S) decays. We determine the total width of the χc0\chi_{c0} to be Γχc0tot=14.3±2.0±3.0\Gamma^{tot}_{\chi_{c0}} = 14.3\pm 2.0\pm 3.0 MeV. We present the first measurement of the branching fraction B(χc0ppˉ)=(16.3±4.4±5.4)×105B(\chi_{c0} \to p \bar{p}) = (16.3 \pm 4.4 \pm 5.4)\times 10^{-5}, where the first error is statistical and the second one systematic. Branching fractions of χc0,2π+π\chi_{c0,2} \to \pi^+ \pi^- and K+KK^+ K^- are also reported.Comment: 10 pages, revtex, 3 figures, 2 table

    In-orbit demonstration of X-ray pulsar navigation with the Insight-HXMT satellite

    Full text link
    In this work, we report the in-orbit demonstration of X-ray pulsar navigation with Insight-Hard X-ray Modulation Telescope (Insight-HXMT), which was launched on Jun. 15th, 2017. The new pulsar navigation method 'Significance Enhancement of Pulse-profile with Orbit-dynamics' (SEPO) is adopted to determine the orbit with observations of only one pulsar. In this test, the Crab pulsar is chosen and observed by Insight-HXMT from Aug. 31th to Sept. 5th in 2017. Using the 5-day-long observation data, the orbit of Insight-HXMT is determined successfully with the three telescopes onboard - High Energy X-ray Telescope (HE), Medium Energy X-ray Telescope (ME) and Low Energy X-ray Telescope (LE) - respectively. Combining all the data, the position and velocity of the Insight-HXMT are pinpointed to within 10 km (3 sigma) and 10 m/s (3 sigma), respectively.Comment: Accepted by the Astrophysical Journal Supplemen

    Discovery of delayed spin-up behavior following two large glitches in the Crab pulsar, and the statistics of such processes

    Full text link
    Glitches correspond to sudden jumps of rotation frequency (ν\nu) and its derivative (ν˙\dot{\nu}) of pulsars, the origin of which remains not well understood yet, partly because the jump processes of most glitches are not well time-resolved. There are three large glitches of the Crab pulsar, detected in 1989, 1996 and 2017, which were found to have delayed spin-up processes before the normal recovery processes. Here we report two additional glitches of the Crab pulsar occurred in 2004 and 2011 for which we discovered delayed spin up processes, and present refined parameters of the largest glitch occurred in 2017. The initial rising time of the glitch is determined as <0.48<0.48 hour. We also carried out a statistical study of these five glitches with observed spin-up processes. The two glitches occurred in 2004 and 2011 have delayed spin-up time scales (τ1\tau_{1}) of 1.7±0.81.7\pm0.8\,days and 1.6±0.41.6\pm0.4\,days, respectively. We find that the Δν\Delta{\nu} vs. Δν˙|\Delta{\dot\nu}| relation of these five glitches is similar to those with no detected delayed spin-up process, indicating that they are similar to the others in nature except that they have larger amplitudes. For these five glitches, the amplitudes of the delayed spin-up process (Δνd1|\Delta{\nu}_{\rm d1}|) and recovery process (Δνd2\Delta{\nu}_{\rm d2}), their time scales (τ1\tau_{1}, τ2\tau_{2}), and permanent changes in spin frequency (Δνp\Delta{\nu}_{\rm p}) and total frequency step (Δνg\Delta{\nu}_{\rm g}) have positive correlations. From these correlations, we suggest that the delayed spin-up processes are common for all glitches, but are too short and thus difficult to be detected for most glitches.Comment: 25 pages, 8 figure

    Observation of ηcωω\eta_c\to\omega\omega in J/ψγωωJ/\psi\to\gamma\omega\omega

    Get PDF
    Using a sample of (1310.6±7.0)×106(1310.6\pm7.0)\times10^6 J/ψJ/\psi events recorded with the BESIII detector at the symmetric electron positron collider BEPCII, we report the observation of the decay of the (11S0)(1^1 S_0) charmonium state ηc\eta_c into a pair of ω\omega mesons in the process J/ψγωωJ/\psi\to\gamma\omega\omega. The branching fraction is measured for the first time to be B(ηcωω)=(2.88±0.10±0.46±0.68)×103\mathcal{B}(\eta_c\to\omega\omega)= (2.88\pm0.10\pm0.46\pm0.68)\times10^{-3}, where the first uncertainty is statistical, the second systematic and the third is from the uncertainty of B(J/ψγηc)\mathcal{B}(J/\psi\to\gamma\eta_c). The mass and width of the ηc\eta_c are determined as M=(2985.9±0.7±2.1)M=(2985.9\pm0.7\pm2.1)\,MeV/c2c^2 and Γ=(33.8±1.6±4.1)\Gamma=(33.8\pm1.6\pm4.1)\,MeV.Comment: 13 pages, 6 figure

    The First GECAM Observation Results on Terrestrial Gamma-ray Flashes and Terrestrial Electron Beams

    Full text link
    Gravitational-wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) is a space-borne instrument dedicated to monitoring high-energy transients, including Terrestrial Gamma-ray Flashes (TGFs) and Terrestrial Electron Beams (TEBs). We implemented a TGF/TEB search algorithm for GECAM, with which 147 bright TGFs, 2 typical TEBs and 2 special TEB-like events are identified during an effective observation time of \sim9 months. We show that, with gamma-ray and charged particle detectors, GECAM can effectively identify and distinguish TGFs and TEBs, and measure their temporal and spectral properties in detail. A very high TGF-lightning association rate of \sim80\% is obtained between GECAM and GLD360 in east Asia region.Comment: The paper was accepted by Geophysical Research Letters on June 16th, 202
    corecore