3 research outputs found

    Storage Codes with Flexible Number of Nodes

    Full text link
    This paper presents flexible storage codes, a class of error-correcting codes that can recover information from a flexible number of storage nodes. As a result, one can make a better use of the available storage nodes in the presence of unpredictable node failures and reduce the data access latency. Let us assume a storage system encodes kℓk\ell information symbols over a finite field F\mathbb{F} into nn nodes, each of size ℓ\ell symbols. The code is parameterized by a set of tuples {(Rj,kj,ℓj):1≤j≤a}\{(R_j,k_j,\ell_j): 1 \le j \le a\}, satisfying k1ℓ1=k2ℓ2=...=kaℓak_1\ell_1=k_2\ell_2=...=k_a\ell_a and k1>k2>...>ka=k,ℓa=ℓk_1>k_2>...>k_a = k, \ell_a=\ell, such that the information symbols can be reconstructed from any RjR_j nodes, each node accessing ℓj\ell_j symbols. In other words, the code allows a flexible number of nodes for decoding to accommodate the variance in the data access time of the nodes. Code constructions are presented for different storage scenarios, including LRC (locally recoverable) codes, PMDS (partial MDS) codes, and MSR (minimum storage regenerating) codes. We analyze the latency of accessing information and perform simulations on Amazon clusters to show the efficiency of presented codes

    Root morphological, Cd accumulation and tolerance characteristics of 2 Dianthus caryophyllus cultivars under Cd stress

    Get PDF
    For studying the physiological response of two different Dianthus caryophyllus cultivars on Cd stress, pot experiment was carried out to measure proline and glutathione in leaves, five types of organic acids in root exudates (oxalic acid, malic acid, acetic acid, tartaric acid, citric acid), soluble sugars and free amino acids, root length, root surface area, root volume, root projected area and Cadmium content in soil, plant roots and aboveground. According to the effects of cadmium stress on the physiological and biochemical characteristics of two Dianthus caryophyllus, the results showed that: the growth of two cultivars are affected, “Master” and “Xiao Yan” are manifested as plant height, leaf, flower buds and biomass decreased, but the “Master” by the stronger inhibitory effect. The root length, total root surface area, total root projected area, and average root diameter of the “Master” increased under cadmium stress, but the root volume decreased. However, the root length, total root surface area, root volume, and root projected area of the “Xiao Yan” under cadmium stress decreased, while the average root diameter increased. The glutathione in the leaves of the two cultivars decreased, the proline content of the leaves of the “Xiao Yan” increased, while that of the “Master” decreased. In the root exudates, the free amino acid content of the two cultivars are reduced, and the secretion of organic acids is also inhibited (except for the citric acid secreted in the “Master”), while the soluble sugar content in the root exudates is expressed as “Xiao Yan” increased, and the “Master” decreased. According to the physiological response to the two cultivars under cadmium stress, the “Xiao Yan” is more suitable for soil restoration in the mining area of Lanping area

    Root morphological, Cd accumulation and tolerance characteristics of 2

    No full text
    For studying the physiological response of two different Dianthus caryophyllus cultivars on Cd stress, pot experiment was carried out to measure proline and glutathione in leaves, five types of organic acids in root exudates (oxalic acid, malic acid, acetic acid, tartaric acid, citric acid), soluble sugars and free amino acids, root length, root surface area, root volume, root projected area and Cadmium content in soil, plant roots and aboveground. According to the effects of cadmium stress on the physiological and biochemical characteristics of two Dianthus caryophyllus, the results showed that: the growth of two cultivars are affected, “Master” and “Xiao Yan” are manifested as plant height, leaf, flower buds and biomass decreased, but the “Master” by the stronger inhibitory effect. The root length, total root surface area, total root projected area, and average root diameter of the “Master” increased under cadmium stress, but the root volume decreased. However, the root length, total root surface area, root volume, and root projected area of the “Xiao Yan” under cadmium stress decreased, while the average root diameter increased. The glutathione in the leaves of the two cultivars decreased, the proline content of the leaves of the “Xiao Yan” increased, while that of the “Master” decreased. In the root exudates, the free amino acid content of the two cultivars are reduced, and the secretion of organic acids is also inhibited (except for the citric acid secreted in the “Master”), while the soluble sugar content in the root exudates is expressed as “Xiao Yan” increased, and the “Master” decreased. According to the physiological response to the two cultivars under cadmium stress, the “Xiao Yan” is more suitable for soil restoration in the mining area of Lanping area
    corecore