19,713 research outputs found

    A 3D assessment and feedback tool for Ankylosing Spondylitis from the perspective of healthcare professionals

    Get PDF
    To investigate the utility of 3D visualization technology to augment assessment and feedback for Ankylosing Spondylitis (AS), a visualization prototype was developed, and both subjective and objective measures of current assessment instruments were compared. To verify and establish a base-line for the prototype’s effectiveness, motion data and measurement data from a healthy adult in a laboratory environment were collected. To validate the prototype, a qualitative evaluation was undertaken using multiple methods including a pilot study, focus groups, and individual interviews. Research subjects comprised physiotherapists in clinical practice and academia and content analysis of their responses was used to substantiate the findings. The prototype enhanced both assessment and feedback of AS from the physiotherapist’s perspective and they believed it to be superior to the current methods used in practice for assessing the condition and in documenting variations for subsequent treatment. The physiotherapists believed that such a system had potential to encourage multidisciplinary working, and to be patient-centric, both with respect to the process of treatment and with regard to the convenience it offered to patients in managing their own condition. 3D visualization of AS symptoms and its treatment via exercise is a valuable technique as demonstrated by the prototype system

    Transplantation of Cultured Olfactory Bulb Cells Prevents Abnormal Sensory Responses During Recovery From Dorsal Root Avulsion in the Rat

    Get PDF
    The central branches of the C7 and C8 dorsal roots were avulsed close to their entry point into the spinal cord in adult rats. The forepaw responses to heat and cold stimuli were tested at 1, 2, and 3 weeks after injury. Over this period, the paws were sensitive to both stimuli at 1-2 weeks and returned toward normal at 3 weeks. Immunohistology showed no evidence of axonal regeneration into the spinal cord in a control group of rats with avulsion only, implying that adjacent dorsal roots and their corresponding dermatomes were involved in the recovery. In a further group of rats, a mixture of bulbar olfactory ensheathing cells and olfactory nerve fibroblasts were transplanted into the gap between the avulsed roots and the spinal cord at the time of avulsion. These rats showed no evidence of either loss of sensation or exaggerated responses to stimuli at any of the time points from 1 to 3 weeks. Immunohistology showed that the transplanted cells formed a complete bridge, and the central branches of the dorsal root fibers had regenerated into the dorsal horn of the spinal cord. These regenerating axons, including Tuj1 and CGRP immunoreactive fibers, were ensheathed by the olfactory ensheathing cells. This confirms our previous demonstration of central regeneration by these transplants and suggests that such transplants may provide a useful means to prevent the development of abnormal sensations such as allodynia after spinal root lesions

    Quantifying single nucleotide variant detection sensitivity in exome sequencing

    Get PDF
    BACKGROUND: The targeted capture and sequencing of genomic regions has rapidly demonstrated its utility in genetic studies. Inherent in this technology is considerable heterogeneity of target coverage and this is expected to systematically impact our sensitivity to detect genuine polymorphisms. To fully interpret the polymorphisms identified in a genetic study it is often essential to both detect polymorphisms and to understand where and with what probability real polymorphisms may have been missed. RESULTS: Using down-sampling of 30 deeply sequenced exomes and a set of gold-standard single nucleotide variant (SNV) genotype calls for each sample, we developed an empirical model relating the read depth at a polymorphic site to the probability of calling the correct genotype at that site. We find that measured sensitivity in SNV detection is substantially worse than that predicted from the naive expectation of sampling from a binomial. This calibrated model allows us to produce single nucleotide resolution SNV sensitivity estimates which can be merged to give summary sensitivity measures for any arbitrary partition of the target sequences (nucleotide, exon, gene, pathway, exome). These metrics are directly comparable between platforms and can be combined between samples to give “power estimates” for an entire study. We estimate a local read depth of 13X is required to detect the alleles and genotype of a heterozygous SNV 95% of the time, but only 3X for a homozygous SNV. At a mean on-target read depth of 20X, commonly used for rare disease exome sequencing studies, we predict 5–15% of heterozygous and 1–4% of homozygous SNVs in the targeted regions will be missed. CONCLUSIONS: Non-reference alleles in the heterozygote state have a high chance of being missed when commonly applied read coverage thresholds are used despite the widely held assumption that there is good polymorphism detection at these coverage levels. Such alleles are likely to be of functional importance in population based studies of rare diseases, somatic mutations in cancer and explaining the “missing heritability” of quantitative traits

    High level expression of Acidothermus cellulolyticus β-1, 4-endoglucanase in transgenic rice enhances the hydrolysis of its straw by cultured cow gastric fluid

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Large-scale production of effective cellulose hydrolytic enzymes is the key to the bioconversion of agricultural residues to ethanol. The goal of this study was to develop a rice plant as a bioreactor for the large-scale production of cellulose hydrolytic enzymes via genetic transformation, and to simultaneously improve rice straw as an efficient biomass feedstock for conversion of cellulose to glucose.</p> <p>Results</p> <p>In this study, the cellulose hydrolytic enzyme β-1, 4-endoglucanase (<it>E1</it>) gene, from the thermophilic bacterium <it>Acidothermus cellulolyticus</it>, was overexpressed in rice through <it>Agrobacterium</it>-mediated transformation. The expression of the bacterial <it>E1 </it>gene in rice was driven by the constitutive Mac promoter, a hybrid promoter of Ti plasmid mannopine synthetase promoter and cauliflower mosaic virus 35S promoter enhancer, with the signal peptide of tobacco pathogenesis-related protein for targeting the E1 protein to the apoplastic compartment for storage. A total of 52 transgenic rice plants from six independent lines expressing the bacterial E1 enzyme were obtained that expressed the gene at high levels without severely impairing plant growth and development. However, some transgenic plants exhibited a shorter stature and flowered earlier than the wild type plants. The E1 specific activities in the leaves of the highest expressing transgenic rice lines were about 20-fold higher than those of various transgenic plants obtained in previous studies and the protein amounts accounted for up to 6.1% of the total leaf soluble protein. A zymogram and temperature-dependent activity analyses demonstrated the thermostability of the E1 enzyme and its substrate specificity against cellulose, and a simple heat treatment can be used to purify the protein. In addition, hydrolysis of transgenic rice straw with cultured cow gastric fluid for one hour at 39°C and another hour at 81°C yielded 43% more reducing sugars than wild type rice straw.</p> <p>Conclusion</p> <p>Taken together, these data suggest that transgenic rice can effectively serve as a bioreactor for the large-scale production of active, thermostable cellulose hydrolytic enzymes. As a feedstock, direct expression of large amount of cellulases in transgenic rice may also facilitate saccharification of cellulose in rice straw and significantly reduce the costs for hydrolytic enzymes.</p

    Prevention of colitis-associated colon cancer using a vaccine to target abnormal expression of the MUC1 tumor antigen

    Get PDF
    Association between chronic inflammation and cancer development is exemplified by inflammatory bowel disease (IBD) where patients with chronic uncontrolled colitis have a significantly increased risk of developing colitis-associated colorectal cancer (CACC). CACC appears to progresses through the inflammation-dysplasia-carcinoma sequence. This highlights the need to identify targets and interventions that reduce inflammation and prevent development of dysplasia in the context of IBD. Using the dextran sulfate sodium (DSS) mouse model of chronic colitis and CACC, we show that an important target of intervention in human disease would be the epithelial cell molecule MUC1 that is aberrantly expressed on inflamed colonocytes and promotes inflammation and progression to CACC. We show that a MUC1 vaccine can ameliorate chronic colitis and prevent development of dysplasia in the colon and thus extend survival in human MUC1 transgenic mice. This study supports the potential of prophylactic vaccines to target antigens that become aberrantly expressed in chronic inflammation (e.g., IBD) and continue to be expressed on the associated cancers (e.g., colon cancer), to prevent and/or treat both diseases

    Systematic Comparison of Three Methods for Fragmentation of Long-Range PCR Products for Next Generation Sequencing

    Get PDF
    Next Generation Sequencing (NGS) technologies are gaining importance in the routine clinical diagnostic setting. It is thus desirable to simplify the workflow for high-throughput diagnostics. Fragmentation of DNA is a crucial step for preparation of template libraries and various methods are currently known. Here we evaluated the performance of nebulization, sonication and random enzymatic digestion of long-range PCR products on the results of NGS. All three methods produced high-quality sequencing libraries for the 454 platform. However, if long-range PCR products of different length were pooled equimolarly, sequence coverage drastically dropped for fragments below 3,000 bp. All three methods performed equally well with regard to overall sequence quality (PHRED) and read length. Enzymatic fragmentation showed highest consistency between three library preparations but performed slightly worse than sonication and nebulization with regard to insertions/deletions in the raw sequence reads. After filtering for homopolymer errors, enzymatic fragmentation performed best if compared to the results of classic Sanger sequencing. As the overall performance of all three methods was equal with only minor differences, a fragmentation method can be chosen solely according to lab facilities, feasibility and experimental design

    Effective Conformal Theory and the Flat-Space Limit of AdS

    Get PDF
    We develop the idea of an effective conformal theory describing the low-lying spectrum of the dilatation operator in a CFT. Such an effective theory is useful when the spectrum contains a hierarchy in the dimension of operators, and a small parameter whose role is similar to that of 1/N in a large N gauge theory. These criteria insure that there is a regime where the dilatation operator is modified perturbatively. Global AdS is the natural framework for perturbations of the dilatation operator respecting conformal invariance, much as Minkowski space naturally describes Lorentz invariant perturbations of the Hamiltonian. Assuming that the lowest-dimension single-trace operator is a scalar, O, we consider the anomalous dimensions, gamma(n,l), of the double-trace operators of the form O (del^2)^n (del)^l O. Purely from the CFT we find that perturbative unitarity places a bound on these dimensions of |gamma(n,l)|<4. Non-renormalizable AdS interactions lead to violations of the bound at large values of n. We also consider the case that these interactions are generated by integrating out a heavy scalar field in AdS. We show that the presence of the heavy field "unitarizes" the growth in the anomalous dimensions, and leads to a resonance-like behavior in gamma(n,l) when n is close to the dimension of the CFT operator dual to the heavy field. Finally, we demonstrate that bulk flat-space S-matrix elements can be extracted from the large n behavior of the anomalous dimensions. This leads to a direct connection between the spectrum of anomalous dimensions in d-dimensional CFTs and flat-space S-matrix elements in d+1 dimensions. We comment on the emergence of flat-space locality from the CFT perspective.Comment: 46 pages, 2 figures. v2: JHEP published versio
    corecore