18,027 research outputs found

    Fine-grained sketch-based image retrieval by matching deformable part models

    Get PDF
    (c) 2014. The copyright of this document resides with its authors. It may be distributed unchanged freely in print or electronic forms.© 2014. The copyright of this document resides with its authors. An important characteristic of sketches, compared with text, rests with their ability to intrinsically capture object appearance and structure. Nonetheless, akin to traditional text-based image retrieval, conventional sketch-based image retrieval (SBIR) principally focuses on retrieving images of the same category, neglecting the fine-grained characteristics of sketches. In this paper, we advocate the expressiveness of sketches and examine their efficacy under a novel fine-grained SBIR framework. In particular, we study how sketches enable fine-grained retrieval within object categories. Key to this problem is introducing a mid-level sketch representation that not only captures object pose, but also possesses the ability to traverse sketch and image domains. Specifically, we learn deformable part-based model (DPM) as a mid-level representation to discover and encode the various poses in sketch and image domains independently, after which graph matching is performed on DPMs to establish pose correspondences across the two domains. We further propose an SBIR dataset that covers the unique aspects of fine-grained SBIR. Through in-depth experiments, we demonstrate the superior performance of our SBIR framework, and showcase its unique ability in fine-grained retrieval

    Quantum Phase Transition, O(3) Universality Class and Phase Diagram of Spin-1/2 Heisenberg Antiferromagnet on Distorted Honeycomb Lattice: A Tensor Renormalization Group Study

    Full text link
    The spin-1/2 Heisenberg antiferromagnet on the distorted honeycomb (DHC) lattice is studied by means of the tensor renormalization group method. It is unveiled that the system has a quantum phase transition of second-order between the gapped quantum dimer phase and a collinear Neel phase at the critical point of coupling ratio \alpha_{c} = 0.54, where the quantum critical exponents \nu = 0.69(2) and \gamma = 1.363(8) are obtained. The quantum criticality is found to fall into the O(3) universality class. A ground-state phase diagram in the field-coupling ratio plane is proposed, where the phases such as the dimer, semi-classical Neel, and polarized phases are identified. A link between the present spin system to the boson Hubbard model on the DHC lattice is also discussed.Comment: 6 pages, 5 figures, published in Phys. Rev.

    Video-based online face recognition using identity surfaces

    Get PDF
    Recognising faces across multiple views is more challenging than that from a fixed view because of the severe non-linearity caused by rotation in depth, self-occlusion, self-shading, and change of illumination. The problem can be related to the problem of modelling the spatiotemporal dynamics of moving faces from video input for unconstrained live face recognition. Both problems remain largely under-developed. To address the problems, a novel approach is presented in this paper. A multi-view dynamic face model is designed to extract the shape-and-pose-free texture patterns of faces. The model provides a precise correspondence to the task of recognition since the 3D shape information is used to warp the multi-view faces onto the model mean shape in frontal-view. The identity surface of each subject is constructed in a discriminant feature space from a sparse set of face texture patterns, or more practically, from one or more learning sequences containing the face of the subject. Instead of matching templates or estimating multi-modal density functions, face recognition can be performed by computing the pattern distances to the identity surfaces or trajectory distances between the object and model trajectories. Experimental results depict that this approach provides an accurate recognition rate while using trajectory distances achieves a more robust performance since the trajectories encode the spatio-temporal information and contain accumulated evidence about the moving faces in a video input

    Scalable Person Re-Identification by Harmonious Attention

    Get PDF

    Neural operator search

    Get PDF

    Neural Graph Embedding for Neural Architecture Search

    Get PDF
    Existing neural architecture search (NAS) methods often operate in discrete or continuous spaces directly, which ignores the graphical topology knowledge of neural networks. This leads to suboptimal search performance and efficiency, given the factor that neural networks are essentially directed acyclic graphs (DAG). In this work, we address this limitation by introducing a novel idea of neural graph embedding (NGE). Specifically, we represent the building block (i.e. the cell) of neural networks with a neural DAG, and learn it by leveraging a Graph Convolutional Network to propagate and model the intrinsic topology information of network architectures. This results in a generic neural network representation integrable with different existing NAS frameworks. Extensive experiments show the superiority of NGE over the state-of-the-art methods on image classification and semantic segmentation
    • …
    corecore