26 research outputs found

    Mechanism of pulse magneto-oscillation grain refinement on pure Al

    Get PDF
    Pulse magneto-oscillation (PMO) was developed as a novel technique to refine the solidification structure of pure aluminium. Its grain refining mechanism was proposed. The PMO refinement mechanism is that the nucleus falls off from the mould wall and drifts into the melt under the action of PMO. The solidification structure of Al melt depends on the linear electric current density, and also the discharge and oscillation frequencies. The radial pressure of PMO sound wave is the major factor that contributes to the migration of nucleus into the melt

    Thermal simulation of the steel solidification during continuous casting

    Get PDF

    Thermal simulation method of solidification process in heavy ingot

    Get PDF

    Thermal simulation technology for solidification process of metals

    Get PDF

    Permafrost Active Layer Microbes From Ny Ålesund, Svalbard (79°N) Show Autotrophic and Heterotrophic Metabolisms With Diverse Carbon-Degrading Enzymes

    Get PDF
    The active layer of permafrost in Ny Ålesund, Svalbard (79°N) around the Bayelva River in the Leirhaugen glacier moraine is measured as a small net carbon sink at the brink of becoming a carbon source. In many permafrost-dominating ecosystems, microbes in the active layers have been shown to drive organic matter degradation and greenhouse gas production, creating positive feedback on climate change. However, the microbial metabolisms linking the environmental geochemical processes and the populations that perform them have not been fully characterized. In this paper, we present geochemical, enzymatic, and isotopic data paired with 10 Pseudomonas sp. cultures and metagenomic libraries of two active layer soil cores (BPF1 and BPF2) from Ny Ålesund, Svalbard, (79°N). Relative to BPF1, BPF2 had statistically higher C/N ratios (15 ± 1 for BPF1 vs. 29 ± 10 for BPF2; n = 30, p < 10–5), statistically lower organic carbon (2% ± 0.6% for BPF1 vs. 1.6% ± 0.4% for BPF2, p < 0.02), statistically lower nitrogen (0.1% ± 0.03% for BPF1 vs. 0.07% ± 0.02% for BPF2, p < 10–6). The d13C values for inorganic carbon did not correlate with those of organic carbon in BPF2, suggesting lower heterotrophic respiration. An increase in the δ13C of inorganic carbon with depth either reflects an autotrophic signal or mixing between a heterotrophic source at the surface and a lithotrophic source at depth. Potential enzyme activity of xylosidase and N-acetyl-β-D-glucosaminidase increases twofold at 15°C, relative to 25°C, indicating cold adaptation in the cultures and bulk soil. Potential enzyme activity of leucine aminopeptidase across soils and cultures was two orders of magnitude higher than other tested enzymes, implying that organisms use leucine as a nitrogen and carbon source in this nutrient-limited environment. Besides demonstrating large variability in carbon compositions of permafrost active layer soils only ∼84 m apart, results suggest that the Svalbard active layer microbes are often limited by organic carbon or nitrogen availability and have adaptations to the current environment, and metabolic flexibility to adapt to the warming climate.Peer Reviewe

    A Hybrid Algorithm for Gas Source Locating Based on Unmanned Vehicles in Dynamic Gas Environment

    No full text
    A new method for locating hazardous gas source based on unmanned vehicles is presented in this paper. Based on the gas sensors and unmanned vehicles, the research on the gas source location algorithm, using the gas concentration of several detection sites as heuristic information, is carried out. When the available information is less, such that the gas diffusion model is unknown, the algorithm can locate the gas leakage source quickly. The proposed algorithm combines particle swarm optimization (PSO) and Nelder–Mead simplex method. Compared with the standard PSO, the proposed algorithm has fewer iterations and faster convergence speed. Finally, the feasibility of the algorithm is verified by digital simulation experiments

    and

    No full text
    The relationship between directional derivatives of generalized distance functions and the existence of generalized nearest points in Banach spaces is investigated. Let G be any nonempty closed subset in a compact locally uniformly convex Banach space. It is proved that if the one-sided directional derivative of the generalized distance function associated to G at x equals to 1 or −1, then the generalized nearest points to x from G exist. We also give a partial answer (Theorem 3.5) to the open problem put forward by S. Fitzpatrick (1989, Bull. Austral. Math. Soc. 39, 233–238). © 2002 Elsevier Science (USA) 1

    An electroporation chip based on flexible microneedle array for in vivo nucleic acid delivery

    No full text
    This paper reports a flexible microneedle array (MNA) electroporation chip for in vivo nucleic acid delivery, which is of great importance for gene therapy. Silicon MNA is proposed to penetrate the high-resistant stratum corneum, while a flexible parylene substrate is used to fit the natural shape of electroporated objects. The chip provides a sufficient electrical field beneath the skin for electroporation with low voltage, which is less likely to harm tissues. Using the proposed chip, we successfully achieved plasmid DNA expression and siRNA delivery in living tissue with low voltage (30-40V). Neither physical nor biological harm to skin was observed. ? 2014 IEEE.EICPCI-S(ISTP)
    corecore