65,056 research outputs found
Stability Of contact discontinuity for steady Euler System in infinite duct
In this paper, we prove structural stability of contact discontinuities for
full Euler system
Effect of mechanical stimulation on the degradation of poly(lactic acid) scaffolds with different designed structures
Biodegradability is one of the required scaffold functions for bone tissue engineering, and it is influenced by the mechanical micro-environment after scaffold implantation into body. This paper aimed to develop a mathematical model to numerically study the mechanical impact on the degradation of poly (lactic acid) (PLA) scaffolds with different designed structures. In addition, the diffusion-governed autocatalysis on the scaffold degradation was also included, and the scaffold collapse time by an author-developed algorithm was determined. The results showed that an increase in mechanical stimulation led to an increase in the scaffold degradation rate. Moreover, different structures with a similar porosity shared a degradation tendency but had different collapse times, which was very sensitive to the diffusion coefficient of the scaffold. The present study could be helpful to understand the dynamic degradation process of PLA scaffolds, and guide the design of PLA material and scaffold structure. It may be also used as a tool for the evaluation of the in vitro and in vivo degradation performance of scaffolds.</p
Quantum theory for mesoscopic electric circuits
A quantum theory for mesoscopic electric circuits in accord with the
discreteness of electric charges is proposed. On the basis of the theory,
Schr\"{o}dinger equation for the quantum LC-design and L-design is solved
exactly. The uncertainty relation for electric charge and current is obtained
and a minimum uncertainty state is solved. By introducing a gauge field, a
formula for persistent current arising from magnetic flux is obtained from a
new point of view.Comment: revtex, no figure
Conduction mechanisms of epitaxial EuTiO3 thin films
To investigate leakage current density versus electric field characteristics,
epitaxial EuTiO3 thin films were deposited on (001) SrTiO3 substrates by pulsed
laser deposition and were post-annealed in a reducing atmosphere. This
investigation found that conduction mechanisms are strongly related to
temperature and voltage polarity. It was determined that from 50 to 150 K the
dominant conduction mechanism was a space-charge-limited current under both
negative and positive biases. From 200 to 300 K, the conduction mechanism shows
Schottky emission and Fowler-Nordheim tunneling behaviors for the negative and
positive biases, respectively. This work demonstrates that Eu3+ is one source
of leakage current in EuTiO3 thin films.Comment: 17 pages,4 figures, conferenc
Catastrophic eruption of magnetic flux rope in the corona and solar wind with and without magnetic reconnection
It is generally believed that the magnetic free energy accumulated in the
corona serves as a main energy source for solar explosions such as coronal mass
ejections (CMEs). In the framework of the flux rope catastrophe model for CMEs,
the energy may be abruptly released either by an ideal magnetohydrodynamic
(MHD) catastrophe, which belongs to a global magnetic topological instability
of the system, or by a fast magnetic reconnection across preexisting or
rapidly-developing electric current sheets. Both ways of magnetic energy
release are thought to be important to CME dynamics. To disentangle their
contributions, we construct a flux rope catastrophe model in the corona and
solar wind and compare different cases in which we either prohibit or allow
magnetic reconnection to take place across rapidly-growing current sheets
during the eruption. It is demonstrated that CMEs, even fast ones, can be
produced taking the ideal MHD catastrophe as the only process of magnetic
energy release. Nevertheless, the eruptive speed can be significantly enhanced
after magnetic reconnection sets in. In addition, a smooth transition from slow
to fast eruptions is observed when increasing the strength of the background
magnetic field, simply because in a stronger field there is more free magnetic
energy at the catastrophic point available to be released during an eruption.
This suggests that fast and slow CMEs may have an identical driving mechanism.Comment: 7 pages, 4 figures, ApJ, in press (vol. 666, Sept. 2007
- …