65,056 research outputs found

    Stability Of contact discontinuity for steady Euler System in infinite duct

    Full text link
    In this paper, we prove structural stability of contact discontinuities for full Euler system

    Effect of mechanical stimulation on the degradation of poly(lactic acid) scaffolds with different designed structures

    Get PDF
    Biodegradability is one of the required scaffold functions for bone tissue engineering, and it is influenced by the mechanical micro-environment after scaffold implantation into body. This paper aimed to develop a mathematical model to numerically study the mechanical impact on the degradation of poly (lactic acid) (PLA) scaffolds with different designed structures. In addition, the diffusion-governed autocatalysis on the scaffold degradation was also included, and the scaffold collapse time by an author-developed algorithm was determined. The results showed that an increase in mechanical stimulation led to an increase in the scaffold degradation rate. Moreover, different structures with a similar porosity shared a degradation tendency but had different collapse times, which was very sensitive to the diffusion coefficient of the scaffold. The present study could be helpful to understand the dynamic degradation process of PLA scaffolds, and guide the design of PLA material and scaffold structure. It may be also used as a tool for the evaluation of the in vitro and in vivo degradation performance of scaffolds.</p

    Quantum theory for mesoscopic electric circuits

    Full text link
    A quantum theory for mesoscopic electric circuits in accord with the discreteness of electric charges is proposed. On the basis of the theory, Schr\"{o}dinger equation for the quantum LC-design and L-design is solved exactly. The uncertainty relation for electric charge and current is obtained and a minimum uncertainty state is solved. By introducing a gauge field, a formula for persistent current arising from magnetic flux is obtained from a new point of view.Comment: revtex, no figure

    Conduction mechanisms of epitaxial EuTiO3 thin films

    Full text link
    To investigate leakage current density versus electric field characteristics, epitaxial EuTiO3 thin films were deposited on (001) SrTiO3 substrates by pulsed laser deposition and were post-annealed in a reducing atmosphere. This investigation found that conduction mechanisms are strongly related to temperature and voltage polarity. It was determined that from 50 to 150 K the dominant conduction mechanism was a space-charge-limited current under both negative and positive biases. From 200 to 300 K, the conduction mechanism shows Schottky emission and Fowler-Nordheim tunneling behaviors for the negative and positive biases, respectively. This work demonstrates that Eu3+ is one source of leakage current in EuTiO3 thin films.Comment: 17 pages,4 figures, conferenc

    Catastrophic eruption of magnetic flux rope in the corona and solar wind with and without magnetic reconnection

    Full text link
    It is generally believed that the magnetic free energy accumulated in the corona serves as a main energy source for solar explosions such as coronal mass ejections (CMEs). In the framework of the flux rope catastrophe model for CMEs, the energy may be abruptly released either by an ideal magnetohydrodynamic (MHD) catastrophe, which belongs to a global magnetic topological instability of the system, or by a fast magnetic reconnection across preexisting or rapidly-developing electric current sheets. Both ways of magnetic energy release are thought to be important to CME dynamics. To disentangle their contributions, we construct a flux rope catastrophe model in the corona and solar wind and compare different cases in which we either prohibit or allow magnetic reconnection to take place across rapidly-growing current sheets during the eruption. It is demonstrated that CMEs, even fast ones, can be produced taking the ideal MHD catastrophe as the only process of magnetic energy release. Nevertheless, the eruptive speed can be significantly enhanced after magnetic reconnection sets in. In addition, a smooth transition from slow to fast eruptions is observed when increasing the strength of the background magnetic field, simply because in a stronger field there is more free magnetic energy at the catastrophic point available to be released during an eruption. This suggests that fast and slow CMEs may have an identical driving mechanism.Comment: 7 pages, 4 figures, ApJ, in press (vol. 666, Sept. 2007
    corecore