639 research outputs found

    Understanding the mechanism stabilizing intermediate spin states in Fe(II)-Porphyrin

    Full text link
    Spin fluctuations in Fe(II)-porphyrins are at the heart of heme-proteins functionality. Despite significant progress in porphyrin chemistry, the mechanisms that rule spin state stabilisation remain elusive. Here, it is demonstrated by using multiconfigurational quantum chemical approaches, including the novel Stochastic-CASSCF method, that electron delocalization between the metal centre and the pi system of the macrocycle differentially stabilises the triplet spin states over the quintet. This delocalisation takes place via charge-transfer excitations, involving the out-of-plane iron d orbitals, key linking orbitals between metal and macrocycle. Through a correlated breathing mechanism, the 3d electrons can make transitions towards the pi orbitals of the macrocycle. This guarantees a strong coupling between the on-site radial correlation on the metal and electron delocalization. Opposite-spin 3d electrons of the triplet can effectively reduce electron repulsion in this manner. Constraining the out-of-plane orbitals from breathing hinders delocalization and reverses the spin ordering. Our results find a qualitative analogue in Kekul\'e resonance structures involving also the metal centre

    Magnetic Interactions in a [Co(II)3Er(III)(OR)4] Model Cubane through Forefront Multiconfigurational Methods

    Full text link
    Strong electron correlation effects are one of the major challenges in modern quantum chemistry. Polynuclear transition metal clusters are peculiar examples of systems featuring such forms of electron correlation. Multireference strategies, often based on but not limited to the concept of complete active space, are adopted to accurately account for strong electron correlation and to resolve their complex electronic structures. However, transition metal clusters already containing four magnetic centers with multiple unpaired electrons make conventional active space based strategies prohibitively expensive, due to their unfavorable scaling with the size of the active space. In this work, forefront techniques, such as density matrix renormalization group (DMRG), full configuration interaction quantum Monte Carlo (FCIQMC), and multiconfiguration pair-density functional theory (MCPDFT), are employed to overcome the computational limitation of conventional multireference approaches and to accurately investigate the magnetic interactions taking place in a [Co(II)3Er(III)(OR)4] (chemical formula [Co(II)3Er(III)(hmp)4(ÎŒ2-OAc)2(OH)3(H2O)], hmp = 2-(hydroxymethyl)-pyridine) model cubane water oxidation catalyst. Complete active spaces with up to 56 electrons in 56 orbitals have been constructed for the seven energetically lowest different spin states. Relative energies, local spin, and spin–spin correlation values are reported and provide crucial insights on the spin interactions for this model system, pivotal in the rationalization of the catalytic activity of this system in the water-splitting reaction. A ferromagnetic ground state is found with a very small, ∌50 cm–1, highest-to-lowest spin gap. Moreover, for the energetically lowest states, S = 3–6, the three Co(II) sites exhibit parallel aligned spins, and for the lower states, S = 0–2, two Co(II) sites retain strong parallel spin alignment

    Quenched Lewis Acidity : Studies on the Medium Dependent Fluorescence of Zinc(II) Complexes

    Get PDF
    Three new zinc(II) coordination units [Zn(1–3)] based on planar‐directing tetradentate Schiff base‐like ligands H(2)(1–3) were synthesized. Their solid‐state structures were investigated by single crystal X‐ray diffraction, showing the tendency to overcome the square‐planar coordination sphere by axial ligation. Affinity in solution towards axial ligation has been tested by extended spectroscopic studies, both in the absorption and emission mode. The electronic spectrum of the pyridine complex [Zn(1)(py)] has been characterized by MC‐PDFT to validate the results of extended TD‐DFT studies. Green emission of non‐emissive solutions of [Zn(1–3)] in chloroform could be switched on in the presence of potent Lewis‐bases. While interpretation in terms of an equilibrium of stacked/non‐fluorescent and destacked/fluorescent species is in line with precedents from literature, the sensitivity of [Zn(1–3)] was greatly reduced. Results of a computation‐based structure search allow to trace the hidden Lewis acidity of [Zn(1–3)] to a new stacking motif, resulting in a strongly enhanced stability of the dimers

    Spin-Pure Stochastic-CASSCF via GUGA-FCIQMC Applied to Iron-Sulfur Clusters.

    Get PDF
    Funder: Max-Planck-GesellschaftIn this work, we demonstrate how to efficiently compute the one- and two-body reduced density matrices within the spin-adapted full configuration interaction quantum Monte Carlo (FCIQMC) method, which is based on the graphical unitary group approach (GUGA). This allows us to use GUGA-FCIQMC as a spin-pure configuration interaction (CI) eigensolver within the complete active space self-consistent field (CASSCF) procedure and hence to stochastically treat active spaces far larger than conventional CI solvers while variationally relaxing orbitals for specific spin-pure states. We apply the method to investigate the spin ladder in iron-sulfur dimer and tetramer model systems. We demonstrate the importance of the orbital relaxation by comparing the Heisenberg model magnetic coupling parameters from the CASSCF procedure to those from a CI-only (CASCI) procedure based on restricted open-shell Hartree-Fock orbitals. We show that the orbital relaxation differentially stabilizes the lower-spin states, thus enlarging the coupling parameters with respect to the values predicted by ignoring orbital relaxation effects. Moreover, we find that, while CASCI results are well fit by a simple bilinear Heisenberg Hamiltonian, the CASSCF eigenvalues exhibit deviations that necessitate the inclusion of biquadratic terms in the model Hamiltonian

    Influence of Temperature on Hydrolysis Acidification of Food Waste

    Get PDF
    AbstractFor two-phase anaerobic digestion process of food waste, degree of hydrolysis and products by acidification during hydrolysis and acidification phase directly affect the performance of methanogenesis phase. Temperature has great impact on hydrolysis and acidification of food waste. This paper monitored the dynamic change of biogas production, biogas composition, pH, soluble chemical oxygen demand (SCOD) and volatile fatty acids (VFAs) during hydrolysis and acidification stage so as to investigate specific influence of temperature on food waste. With the same inoculum and 9 days’ fermentation, three different temperatures (35, 55 and 70°C) were taken into consideration. The results showed that cumulative gas production was 4860mL at 70°C, which was 129.79% and 37.87% higher than that at 35 and 55°C. Besides, hydrogen content at 70°C was 45.34%, which was the highest among the three temperatures. Hydrolysis rate was proportional to the increase of temperature. Meanwhile, total VFAs yield and composition widely differed at three different temperatures. The hydrolysis and acidification products at 35°C were mainly ethanol and acetic acids and the highest concentrations of ethanol at 35°C were 3.28 and 3.65 times of that at 55 and 70°C, but more acetic, isobutyric and butyric acids were generated at 55 and 70°C. Among three temperatures, 70°C had the highest acetic acids concentration while 55°C had the highest isobutyric and butyric acids concentration

    Combined unitary and symmetric group approach applied to low-dimensional Heisenberg spin systems

    Get PDF
    A novel combined unitary and symmetric group approach is used to study the spin-1/2 Heisenberg model and related Fermionic systems in a total spin-adapted representation, using a linearly-parameterised Ansatz for the many-body wave function. We show that a more compact ground-state wave function representation-indicated by a larger leading ground-state coefficient-is obtained when combining the symmetric group S-n, in the form of permutations of the underlying lattice site ordering, with the cumulative spin coupling based on the unitary group U(n). In one-dimensional systems the observed compression of the wave function is reminiscent of block-spin renormalization group approaches, and allows us to study larger lattices (here taken up to 80 sites) with the spin-adapted full configuration interaction quantum Monte Carlo method, which benefits from the sparsity of the Hamiltonian matrix and the corresponding sampled eigenstates that emerge from the reordering. We find that in an optimal lattice ordering the configuration state function with highest weight already captures with high accuracy the spin-spin correlation function of the exact ground-state wave function. This feature is found for more general lattice models, such as the Hubbard model, and ab initio quantum chemical models, exemplified by one-dimensional hydrogen chains. We also provide numerical evidence that the optimal lattice ordering for the unitary group approach is not generally equivalent to the optimal ordering obtained for methods based on matrix-product states, such as the density-matrix renormalization group approach

    Causal Reasoning of Entities and Events in Procedural Texts

    Full text link
    Entities and events are crucial to natural language reasoning and common in procedural texts. Existing work has focused either exclusively on entity state tracking (e.g., whether a pan is hot) or on event reasoning (e.g., whether one would burn themselves by touching the pan), while these two tasks are often causally related. We propose CREPE, the first benchmark on causal reasoning of event plausibility and entity states. We show that most language models, including GPT-3, perform close to chance at .35 F1, lagging far behind human at .87 F1. We boost model performance to .59 F1 by creatively representing events as programming languages while prompting language models pretrained on code. By injecting the causal relations between entities and events as intermediate reasoning steps in our representation, we further boost the performance to .67 F1. Our findings indicate not only the challenge that CREPE brings for language models, but also the efficacy of code-like prompting combined with chain-of-thought prompting for multihop event reasoning.Comment: In Findings of EACL 202

    Gld2 activity is regulated by phosphorylation in the N-terminal domain

    Get PDF
    The de-regulation of microRNAs (miRNAs) is associated with multiple human diseases, yet cellular mechanisms governing miRNA abundance remain largely elusive. Human miR-122 is required for Hepatitis C proliferation, and low miR-122 abundance is associated with hepatic cancer. The adenylyltransferase Gld2 catalyses the post-transcriptional addition of a single adenine residue (A + 1) to the 3Êč-end of miR-122, enhancing its stability. Gld2 activity is inhibited by binding to the Hepatitis C virus core protein during HepC infection, but no other mechanisms of Gld2 regulation are known. We found that Gld2 activity is regulated by site-specific phosphorylation in its disordered N-terminal domain. We identified two phosphorylation sites (S62, S110) where phosphomimetic substitutions increased Gld2 activity and one site (S116) that markedly reduced activity. Using mass spectrometry, we confirmed that HEK 293 cells readily phosphorylate the N-terminus of Gld2. We identified protein kinase A (PKA) and protein kinase B (Akt1) as the kinases that site-specifically phosphorylate Gld2 at S116, abolishing Gld2-mediated nucleotide addition. The data demonstrate a novel phosphorylation-dependent mechanism to regulate Gld2 activity, revealing tumour suppressor miRNAs as a previously unknown target of Akt1-dependent signalling
    • 

    corecore