280,237 research outputs found

    WARP: Wavelets with adaptive recursive partitioning for multi-dimensional data

    Full text link
    Effective identification of asymmetric and local features in images and other data observed on multi-dimensional grids plays a critical role in a wide range of applications including biomedical and natural image processing. Moreover, the ever increasing amount of image data, in terms of both the resolution per image and the number of images processed per application, requires algorithms and methods for such applications to be computationally efficient. We develop a new probabilistic framework for multi-dimensional data to overcome these challenges through incorporating data adaptivity into discrete wavelet transforms, thereby allowing them to adapt to the geometric structure of the data while maintaining the linear computational scalability. By exploiting a connection between the local directionality of wavelet transforms and recursive dyadic partitioning on the grid points of the observation, we obtain the desired adaptivity through adding to the traditional Bayesian wavelet regression framework an additional layer of Bayesian modeling on the space of recursive partitions over the grid points. We derive the corresponding inference recipe in the form of a recursive representation of the exact posterior, and develop a class of efficient recursive message passing algorithms for achieving exact Bayesian inference with a computational complexity linear in the resolution and sample size of the images. While our framework is applicable to a range of problems including multi-dimensional signal processing, compression, and structural learning, we illustrate its work and evaluate its performance in the context of 2D and 3D image reconstruction using real images from the ImageNet database. We also apply the framework to analyze a data set from retinal optical coherence tomography

    Gap Theorems for Locally Conformally Flat Manifolds

    Full text link
    In this paper, we prove a gap result for a locally conformally flat complete non-compact Riemannian manifold with bounded non-negative Ricci curvature and a scalar curvature average condition. We show that if it has positive Green function, then it is flat. This result is proved by setting up new global Yamabe flow. Other extensions related to bounded positive solutions to a schrodinger equation are also discussed.Comment: Accepted version in Journal of Differential Equatrio

    Scalable Bayesian model averaging through local information propagation

    Full text link
    We show that a probabilistic version of the classical forward-stepwise variable inclusion procedure can serve as a general data-augmentation scheme for model space distributions in (generalized) linear models. This latent variable representation takes the form of a Markov process, thereby allowing information propagation algorithms to be applied for sampling from model space posteriors. In particular, we propose a sequential Monte Carlo method for achieving effective unbiased Bayesian model averaging in high-dimensional problems, utilizing proposal distributions constructed using local information propagation. We illustrate our method---called LIPS for local information propagation based sampling---through real and simulated examples with dimensionality ranging from 15 to 1,000, and compare its performance in estimating posterior inclusion probabilities and in out-of-sample prediction to those of several other methods---namely, MCMC, BAS, iBMA, and LASSO. In addition, we show that the latent variable representation can also serve as a modeling tool for specifying model space priors that account for knowledge regarding model complexity and conditional inclusion relationships
    • …
    corecore