46,093 research outputs found

    Pion condensation in a soft-wall AdS/QCD model

    Full text link
    Finite isospin chemical potential μI\mu_I and temperature TT have been introduced in the framework of soft-wall AdS/QCD model. By self-consistently solve the equation of motion, we obtain the phase boundary of pion condensation phase, across which the system undergoes a phase transition between pion condensation phase and normal phase. Comparing the free energy of solutions with and without pion condensation, we find that the phase transition is of first order type both at large μI\mu_I and small μI\mu_I. Qualitatively, the behavior at large μI\mu_I is in agreement with the lattice simulation in Phys.Rev.D66(2002)034505, while the behavior at small μI\mu_I is different from lattice simulations and previous studies in hard wall AdS/QCD model. This indicates that a full back-reaction model including the interaction of gluo-dynamics and chiral dynamics might be necessary to describe the small μI\mu_I pion condensation phase. This study could provide certain clues to build a more realistic holographic model.Comment: Regular article, 21 page

    Comparative Study of Different Methods in Vibration-Based Terrain Classification for Wheeled Robots with Shock Absorbers

    Get PDF
    open access articleAutonomous robots that operate in the field can enhance their security and efficiency by accurate terrain classification, which can be realized by means of robot-terrain interaction-generated vibration signals. In this paper, we explore the vibration-based terrain classification (VTC), in particular for a wheeled robot with shock absorbers. Because the vibration sensors are usually mounted on the main body of the robot, the vibration signals are dampened significantly, which results in the vibration signals collected on different terrains being more difficult to discriminate. Hence, the existing VTC methods applied to a robot with shock absorbers may degrade. The contributions are two-fold: (1) Several experiments are conducted to exhibit the performance of the existing feature-engineering and feature-learning classification methods; and (2) According to the long short-term memory (LSTM) network, we propose a one-dimensional convolutional LSTM (1DCL)-based VTC method to learn both spatial and temporal characteristics of the dampened vibration signals. The experiment results demonstrate that: (1) The feature-engineering methods, which are efficient in VTC of the robot without shock absorbers, are not so accurate in our project; meanwhile, the feature-learning methods are better choices; and (2) The 1DCL-based VTC method outperforms the conventional methods with an accuracy of 80.18%, which exceeds the second method (LSTM) by 8.23%
    • …
    corecore