65 research outputs found

    Greening China naturally

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in AMBIO: A Journal of the Human Environment 40 (2011): 828-831, doi:10.1007/s13280-011-0150-8.China leads the world in afforestation, and is one of the few countries whose forested area is increasing. However, this massive ‘‘greening’’ effort has been less effective than expected; afforestation has sometimes produced unintended environmental, ecological, and socioeconomic consequences, and has failed to achieve the desired ecological benefits. Where afforestation has succeeded, the approach was tailored to local environmental conditions. Using the right plant species or species composition for the site and considering alternatives such as grassland restoration have been important success factors. To expand this success, government policy should shift from a forest-based approach to a results-based approach. In addition, long-term monitoring must be implemented to provide the data needed to develop a cost-effective, scientifically informed restoration policy.This work was supported by the Fundamental Research Funds for the Central Universities (HJ2010-3) and the CAS/ SAFEA International Partnership Program for Creative Research Teams of ‘‘Ecosystem Processes and Services’’

    Exploring Integrative Development of Urban Agglomeration from the Perspective of Urban Symbiosis and Production–Living–Ecological Function

    No full text
    Integrative development is an effective way to enhance urban potential and implement resource-optimal relocation, especially in urban agglomeration regions. Conventionally, the evaluation of urban integration is usually studied from one aspect of urban interaction intensity or urban functional similarity, but considering both together can better reflect the integrative condition of urban agglomeration. This paper introduces the symbiosis theory into the exploration of urban integration. The production–living–ecological function is taken to analyze urban function, and the improved radiation model is adopted to measure urban interaction. Under the framework of symbiosis theory, we integrate urban function and urban interaction to indicate the integrative condition of urban agglomeration from a production–living–ecological aspect. Urban agglomeration in the Central Yunnan Urban Agglomeration is taken as the study area. The results show that (1) spatial variations occur in high-value areas with distinct functions. The east emphasizes production and living, while the west leans towards ecology. (2) Urban agglomeration is in its early developmental stages without stable symbiosis. Interactions among counties mostly show sporadic point symbiosis, lacking stability. It mainly radiates outward from the central area, with more stable interactions in high-value areas, often causing inter-city competition. (3) Urban agglomeration integration is generally low, with distinct high-value production and ecological areas. The central, eastern, and southern regions exhibit strong production and living interactions, while the west benefits from ecological interactions. These findings can offer some insights for informing relevant policies and fostering the integrated development of urban agglomerations

    Laboratory Evaluation on the Performance Degradation of Styrene-Butadiene-Styrene-Modified Asphalt Mixture Reinforced with Basalt Fiber under Freeze–Thaw Cycles

    No full text
    This paper aims at the freeze–thaw (F-T) cycles resistance of styrene-butadiene-styrene (SBS) modified asphalt mixture reinforced with basalt fiber in order to explore the performance evaluation and prediction of asphalt mixtures at seasonal frozen regions. Asphalt was firstly modified by the common SBS and then SBS-modified stone mastic asphalt (SMA) specimens with basalt fiber were prepared by using Superpave gyratory compaction (SGC) method. Next, asphalt mixture specimens processed by 0–21 F-T cycles were adopted for the high-temperature compression test, low-temperature splitting test and indirect tensile stiffness modulus test. Meanwhile, a three-dimensional model of F-T damage evolution of the mixtures was also established based on the reliability and damage theory. The test results showed that the loss rates of mechanical strength increased rapidly, and then gradually flattened; however, these indications changed significantly after 15–18 F-T cycles. In addition, the exponential function could reflect the variation trend of the mechanical performances with F-T cycles to a certain degree. The damage evolution and prediction model based on the reliability and damage theory can be established to analyze the internal degradation law better

    Experimental Characterization of Viscoelastic Behaviors of Nano-TiO2/CaCO3 Modified Asphalt and Asphalt Mixture

    No full text
    The purpose of this paper is to promote the application of nano-TiO2/CaCO3 in bituminous materials and present an experimental characterization of viscoelastic behaviors of bitumen and bituminous mixture modified by nano-TiO2/CaCO3. In this work, a series of viscoelastic behavior characterization tests were conducted, including dynamic shear rheometer (DSR) test for bitumen, uniaxial static compression creep test and dynamic modulus test for bituminous mixture. Moreover, various viscoelastic models with clear physical meanings were used to evaluate the influence of nano-TiO2/CaCO3 on the macroscopic performance of bitumen and bituminous mixture. The results show that bitumen and its mixtures are time-temperature dependent. The Christensen-Anderson-Marasteanu (CAM) model of frequency sweep based on DSR test indicated that adding nano-TiO2/CaCO3 can effectively capture the sensitivity of temperature. In addition, the incorporation of nano-TiO2/CaCO3 in bituminous mixture can significantly enhance the high-temperature anti-rutting, and slightly improve the low-temperature anti-cracking as well. At the same time, the modified Burgers model can accurately describe the viscoelastic behavior of bituminous mixtures in the first two creep stages, reflecting the consolidation effect of bituminous mixture. Also, the generalized Sigmoidal model can accurately grasp the characteristics of the relationship between dynamic modulus and reduced frequency and achieve good prediction effects in a wider frequency range

    A Chinese soil conservation dataset preventing soil water erosion from 1992 to 2019

    No full text
    Abstract Soil conservation service (SC) is defined as the ability of terrestrial ecosystems to control soil erosion and protect soil function. A long-term and high-resolution estimation of SC is urgent for ecological assessment and land management on a large scale. Here, a 300-m resolution Chinese soil conservation dataset (CSCD) from 1992 to 2019, for the first time, is established based on the Revised Universal Soil Loss Equation (RUSLE) model. The RUSLE modelling was conducted based on five key parameters, including the rainfall erosivity (interpolation of daily rainfall), land cover management (provincial data), conservation practices (weighted by terrain and crop types), topography (30 m), and soil properties (250 m). The dataset agrees with previous measurements in all basins (R2 > 0.5) and other regional simulations. Compared with current studies, the dataset has long-term, large-scale, and relatively high-resolution characteristics. This dataset will serve as a base to open out the mechanism of SC variations in China and could help assess the ecological effects of land management policies
    • …
    corecore