5,162,242 research outputs found

    Energy dependent kinetic freeze-out temperature and transverse flow velocity in high energy collisions

    Full text link
    Transverse momentum spectra of negative and positive pions produced at mid-(pseudo)rapidity in inelastic or non-single-diffractive proton-proton collisions and in central nucleus-nucleus collisions over an energy range from a few GeV to above 10 TeV are analyzed by a (two-component) blast-wave model with Boltzmann-Gibbs statistics and with Tsallis statistics respectively. The model results are in similarly well agreement with the experimental data measured by a few productive collaborations who work at the Heavy Ion Synchrotron (SIS), Super Proton Synchrotron (SPS), Relativistic Heavy Ion Collider (RHIC), and Large Hadron Collider (LHC), respectively. The energy dependent kinetic freeze-out temperature and transverse flow velocity are obtained and analyzed. Both the quantities have quick increase from the SIS to SPS, and slight increase or approximate invariability from the top RHIC to LHC. Around the energy bridge from the SPS to RHIC, the considered quantities in proton-proton collisions obtained by the blast-wave model with Boltzmann-Gibbs statistics show more complex energy dependent behavior comparing with the results in other three cases.Comment: 16 pages, 4 figures. The European Physical Journal A, accepted. arXiv admin note: text overlap with arXiv:1805.0334

    Successive AF/DF Relaying in the Cooperative DS-CDMA Uplink: Capacity Analysis and its System Architecture

    No full text
    A successive relaying aided network (SRAN) is designed for a multi-user spread-spectrum scenario conceived for noncoherent (NC) detection in order to convert the typical 50% half-duplex relaying-induced throughput loss to a potential user-load reduction of the CDMA system, where the NC allows us to avoid the extra power consumption imposed by channel estimation. We commence by evaluating the noncoherent Discrete-input Continuous-output Memoryless Channel (DCMC) capacity of both the Amplify-and-Forward (AF) based and of the Decode-and-Forward (DF) based SRAN in the DS-CDMA uplink. Whilst NC detection has the added benefit of eliminating both the pilot-overhead and power-hungry channel estimation, it tends to form an error-floor at high Doppler frequencies. We mitigate this problem using multiple-symbol detection, which increases the detection complexity upon extending the detection window. Finally, a relay-aided soft-input soft-output Multiple-Symbol Differential Sphere Detection (SISO-MSDSD) CDMA regime is proposed, which significantly reduces the system’s complexity without sacrificing its performance

    Quantum phase transition in a three-level atom-molecule system

    Full text link
    We adopt a three-level bosonic model to investigate the quantum phase transition in an ultracold atom-molecule conversion system which includes one atomic mode and two molecular modes. Through thoroughly exploring the properties of energy level structure, fidelity, and adiabatical geometric phase, we confirm that the system exists a second-order phase transition from an atommolecule mixture phase to a pure molecule phase. We give the explicit expression of the critical point and obtain two scaling laws to characterize this transition. In particular we find that both the critical exponents and the behaviors of ground-state geometric phase change obviously in contrast to a similar two-level model. Our analytical calculations show that the ground-state geometric phase jumps from zero to ?pi/3 at the critical point. This discontinuous behavior has been checked by numerical simulations and it can be used to identify the phase transition in the system.Comment: 8 pages,8 figure

    Probing the EOS of dense neutron-rich matter with high-energy radioactive beams

    Full text link
    Nuclear reactions induced by high energy radioactive beams create a transient state of nuclear matter with high density and appreciable neutron to proton asymmetry. This will provide a unique opportunity to explore novel properties of dense neutron-rich matter and the isospin-dependence of the nuclear equation of state (EOS). Here we study the π/π+\pi^-/\pi^+ ratio as a probe of the EOS of dense neutron-rich matter.Comment: Talk given at NN2003 to appear in the Proc. in Nucl. Phys. A (2004

    A Higgs Mass Shift to 125 GeV and A Multi-Jet Supersymmetry Signal: Miracle of the Flippons at the \sqrt{s} = 7 TeV LHC

    Get PDF
    We describe a model named No-Scale F-SU(5) which is simultaneously capable of explaining the dual signals emerging at the LHC of i) a 124-126 GeV Higgs boson mass m_h, and ii) tantalizing low-statistics excesses in the multi-jet data which may attributable to supersymmetry. These targets tend to be mutually exclusive in more conventional approaches. The unified mechanism responsible for both effects is the introduction of a rather unique set of vector-like multiplets at the TeV scale, dubbed flippons, which i) can elevate m_h by around 3-4 GeV via radiative loop corrections, and ii) flatten the running of the strong coupling and color-charged gaugino, resulting in a prominent collider signal from production of light gluino pairs. This well motivated theoretical framework maintains consistency with all key phenomenological constraints, and all residual parameterization freedom may in principle be fixed by a combination of the two experiments described. We project that the already collected luminosity of 5 fb^-1 may be sufficient to definitively establish the status of this model, given appropriate data selection cuts.Comment: Physics Letters B version, 10 pages, 3 figures, 2 tables. arXiv admin note: text overlap with arXiv:1105.398

    Wonderful compactification of an arrangement of subvarieties

    Full text link
    We define the wonderful compactification of an arrangement of subvarieties. Given a complex nonsingular algebraic variety YY and certain collection G\mathcal{G} of subvarieties of YY, the wonderful compactification YGY_\mathcal{G} can be constructed by a sequence of blow-ups of YY along the subvarieties of the arrangement. This generalizes the Fulton-MacPherson configuration spaces and the wonderful models given by De Concini and Procesi. We give a condition on the order of blow-ups in the construction of YGY_\mathcal{G} such that each blow-up is along a nonsingular center.Comment: 30 pages, presentation is improved, to appear in the Michigan Mathematical Journa
    corecore